Advertisement

Cytotechnology

, Volume 68, Issue 4, pp 665–674 | Cite as

Activated macrophages as a feeder layer for growth of resident cardiac progenitor cells

  • Diana E. Sepúlveda
  • Patricia Cabeza Meckert
  • Paola Locatelli
  • Fernanda D. Olea
  • Néstor G. Pérez
  • Oscar A. Pinilla
  • Romina G. Díaz
  • Alberto Crottogini
  • Rubén P. LaguensEmail author
Original Research

Abstract

The adult heart contains a population of cardiac progenitor cells (CPCs). Growing and collecting an adequate number of CPCs demands complex culture media containing growth factors. Since activated macrophages secrete many growth factors, we investigated if activated isolated heart cells seeded on a feeder layer of activated peritoneal macrophages (PM) could result in CPCs and if these, in turn, could exert cardioprotection in rats with myocardial infarction (MI). Heart cells of inbred Wistar rats were isolated by collagenase digestion and cultured on PM obtained 72 h after intraperitoneal injection of 12 ml thioglycollate. Cells (1 × 106) exhibiting CPC phenotype (immunohistochemistry) were injected in the periphery of rat MI 10 min after coronary artery occlusion. Control rats received vehicle. Three weeks later, left ventricular (LV) function (echocardiogram) was assessed, animals were euthanized and the hearts removed for histological studies. Five to six days after seeding heart cells on PM, spherical clusters composed of small bright and spherical cells expressing mostly c-Kit and Sca-1 antigens were apparent. After explant, those clusters developed cobblestone-like monolayers that expressed smooth muscle actin and sarcomeric actin and were successfully transferred for more than ten passages. When injected in the MI periphery, many of them survived at 21 days after coronary ligature, improved LV ejection fraction and decreased scar size as compared with control rats. CPC-derived cells with cardiocyte and smooth muscle phenotypes can be successfully grown on a feeder layer of activated syngeneic PM. These cells decreased scar size and improved heart function in rats with MI.

Keywords

Cardiac progenitor cells Macrophage Myocardial infarction Rat 

Notes

Acknowledgments

This work was supported by Grant PAE-PICT-2007-103 from the Ministry of Science, Technology and Innovative Production of Argentina.

Conflict of interest

The authors declare that they not have conflict of interest.

References

  1. Andersen DC, Andersen P, Schneider M, Jensen HB, Sheikh SP (2009) Murine “cardiospheres” are not a source of stem cells with cardiomyogenic potential. Stem Cells 27:1571–1581CrossRefGoogle Scholar
  2. Barile L, Messina E, Giacomello A, Marbán E (2007) Endogenous cardiac stem cells. Prog Cardiovasc Dis 50:31–48CrossRefGoogle Scholar
  3. Bearzi C, Rota M, Hosoda T, Tillmanns J, Nascimbene A, De Angelis A, Yasuzawa-Amano S, Trofimova I, Siggins RW, Lecapitaine N, Cascapera S, Beltrami AP, D’Alessandro DA, Zias E, Quaini F, Urbanek K, Michler RE, Bolli R, Kajstura J, Leri A, Anversa P (2007) Human cardiac stem cells. Proc Natl Acad Sci USA 104:14068–14073CrossRefGoogle Scholar
  4. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K, Leri A, Kajstura J, Nadal-Ginard B, Anversa P (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776CrossRefGoogle Scholar
  5. Bolli R, Chugh AR, D’Amario D, Loughran JH, Stoddard MF, Ikram SGM, Wagner SG, Leri A, Hosoda T, Sanada F, Elmore JB, Goichberg P, Cappetta D, Solankhi NK, Fahsah I, Rokosh DG, Slaughter MS, Kajstura J, Anversa P (2011) Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 378:1847–1857CrossRefGoogle Scholar
  6. Delgado M, Martinez C, Pozo D, Calvo JR, Leceta J, Ganea D, Gomariz RP (1999) Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activation polypeptide (PACAP) protect mice from lethal endotoxemia through the inhibition of TNF-a and IL-6. J Immunol 162:1200–1205Google Scholar
  7. Fujiwara N, Kobayashi K (2005) Macrophages in inflammation. Curr Drug Targets Inflamm Allergy 4:281–286CrossRefGoogle Scholar
  8. Genovesi EV, Knudsen RC, Gerstner DJ, Card DM, Martins CLV, Quintero JC, Whyard TC (1989) In vitro induction of swine peripheral blood monocyte proliferation by the fibroblast-derived murine hematopoietic growth factor CSF-1. Vet Immunol Immunopathol 23:223–224CrossRefGoogle Scholar
  9. Hiruma H, Hikawa S, Kawakami T (2012) Immunocytochemical colocalization of fibroblast growth factor with neurotrophin-3 in mouse alveolar macrophages. Acta Histochem Cytochem 45:131–137CrossRefGoogle Scholar
  10. Hosoda T (2012) C-kit-positive cardiac stem cells and myocardial regeneration. Am J Cardiovasc Dis 2:58–67Google Scholar
  11. Johnston PV, Sasano T, Mills K, Evers R, Lee ST, Smith RR, Lardo AC, Lai S, Steenbergen C, Gerstenblith G, Lange R, Marbán E (2009) Engraftment, differentiation, and functional benefits of autologous cardiosphere-derived cells in porcine ischemic cardiomyopathy. Circulation 120:1075–1083CrossRefGoogle Scholar
  12. Kajstura J, Gurusamy N, Ogórek B, Goichberg P, Clavo-Rondon C, Hosoda T, D’Amario D, Bardelli S, Beltrami AP, Cesselli D, Bussani R, del Monte F, Quaini F, Rota M, Beltrami CA, Buchholz BA, Leri A, Anversa P (2010) Myocyte turnover in the aging human heart. Circ Res 107:1374–1386CrossRefGoogle Scholar
  13. Li Z, Lee A, Huang M, Chun H, Chung J, Chu P, Hoyt G, Yang P, Rosenberg J, Robbins RC, Wu JC (2009) Imaging survival and function of transplanted cardiac resident stem cells. J Am Coll Cardiol 53:1229–1240CrossRefGoogle Scholar
  14. Li TS, Cheng K, Malliaras K, Smith RR, Zhang Y, Sun B, Matsushita N, Blusztajn A, Terrovitis J, Kusuoka H, Marbán L, Marbán E (2012) Direct comparison of different stem cell types and subpopulations reveals superior paracrine potency and myocardial repair efficacy with cardiosphere-derived cells. J Am Coll Cardiol 59:942–953CrossRefGoogle Scholar
  15. Ling L, Bai J, Gu R, Jiang C, Li R, Kang L, Ferro A, Xu B (2013) Sca-1+ cardiac progenitor cell therapy with cells overexpressing integrin-linked kinase improves cardiac function after myocardial infarction. Transplantation 95:1187–1196CrossRefGoogle Scholar
  16. Makkar RR, Smith RR, Cheng K, Malliaras K, Thomson LE, Berman D, Czer LS, Marbán L, Mendizabal A, Johnston PV, Russell SD, Schuleri KH, Lardo AC, Gerstenblith G, Marbán E (2012) Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 379:895–904CrossRefGoogle Scholar
  17. Messina E, De Angelis L, Frati G, Morrone S, Chimenti S, Fiordaliso F, Salio M, Battaglia M, Latronico MV, Coletta M, Vivarelli E, Frati L, Cossu G, Giacomello A (2004) Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 95:911–921CrossRefGoogle Scholar
  18. Oberlin D, Fellbaum C, Eppler E (2009) Insulin-like growth factor I messenger RNA and protein are expressed in the human lymph node and distinctly confined to subtypes of macrophages, antigen-presenting cells, lymphocytes and endothelial cells. Immunology 128:342–350CrossRefGoogle Scholar
  19. Oh H, Bradfute SB, Gallardo TD, Nakamura T, Gaussin V, Mishina Y, Pocius J, Michael LH, Behringer RR, Garry DJ, Entman ML, Schneider MD (2003) Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci USA 100:12313–12318CrossRefGoogle Scholar
  20. Shenje LT, Field LJ, Pritchard CA, Guerin CJ, Rubart M, Soonpa MH, Ang KL, Galiñanes M (2008) Lineage tracing of cardiac explant derived cells. PLoS ONE 3:e1929CrossRefGoogle Scholar
  21. Smith RR, Barile L, Cho HC, Leppo MK, Hare JM, Messina E, Giacomello A, Abraham MR, Marbán E (2007) Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 115:896–908CrossRefGoogle Scholar
  22. Tang YL, Shen L, Qian K, Phillips MI (2007) A novel two-step procedure to expand cardiac Sca-1+ cells clonally. Biochem Biophys Res Commun 359:877–883CrossRefGoogle Scholar
  23. Van der Zeist BA, Carleton CS, Schelsinger S (1978) Proliferative capacity of mouse peritoneal macrophages in vitro. J Exp Med 147:1253–1266CrossRefGoogle Scholar
  24. Vera Janavel G, Crottogini A, Cabeza Meckert P, Cuniberti L, Mele A, Papouchado M, Fernández N, Bercovich A, Criscuolo M, Melo C, Laguens R (2006) Plasmid-mediated VEGF gene transfer induces cardiomyogenesis and reduces myocardial infarct size in sheep. Gene Ther 13:1133–1142CrossRefGoogle Scholar
  25. Wang X, Hu Q, Nakamura Y, Lee J, Zhang G, From AH, Zhang J (2006) The role of the sca-1+/CD31—cardiac progenitor cell population in postinfarction left ventricular remodeling. Stem Cells 24:1779–1788CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Diana E. Sepúlveda
    • 1
  • Patricia Cabeza Meckert
    • 1
  • Paola Locatelli
    • 2
  • Fernanda D. Olea
    • 2
  • Néstor G. Pérez
    • 3
  • Oscar A. Pinilla
    • 3
  • Romina G. Díaz
    • 3
  • Alberto Crottogini
    • 2
  • Rubén P. Laguens
    • 1
    Email author
  1. 1.Department of PathologyUniversidad FavaloroBuenos AiresArgentina
  2. 2.Department of PhysiologyUniversidad FavaloroBuenos AiresArgentina
  3. 3.Facultad de Ciencias Médicas, Centro de Investigaciones CardiovascularesUniversidad Nacional de La PlataLa PlataArgentina

Personalised recommendations