, Volume 68, Issue 2, pp 279–289 | Cite as

Synergistic protective role of ceftriaxone and ascorbic acid against subacute diazinon-induced nephrotoxicity in rats

  • Mohamed M. Abdel-Daim
Original Research


Diazinon (DZN) is a synthetic organophosphrus acaricide and insecticide widely used for veterinary and agricultural purposes. However, its animal and human exposure leads to nephrotoxicity. Our experimental objective was to evaluate protective effects of ceftriaxone and/or ascorbic acid—vitamin C against DZN-induced renal injury in male Wistar albino rats. DZN-treated animals revealed significant elevation in serum biochemical parameters related to renal injury: urea, uric acid and creatinine. DZN intoxication significantly increased renal lipid peroxidation, and significant inhibition in antioxidant biomarkers including, reduced glutathione, glutathione peroxidase, superoxide dismutase, catalase and total antioxidant capacity. In addition, DZN significantly reduced serum acetylcholinestrase level. Moreover, It induced serum and kidney tumor necrosis factor-α level. Both ceftriaxone and vitamin C protect against DZN-induced serum as well as renal tissue biochemical parameters when used alone or in combination along with DZN-intoxication. Furthermore, both ceftriaxone and vitamin C produced synergetic nephroprotective and antioxidant effects. Therefore, it could be concluded that ceftriaxone and/or vitamin C administration are able to minimize the toxic effects of DZN by its free radical-scavenging and potent antioxidant activity.


Diazinon Nephrotoxicity Ceftriaxone Vitamin C Antioxidant Kidney Rats 



The authors would like to thank Sandoz-Novartis, Egypt, for supplying Ceftriaxone® used in our experiment. The company had neither role in designing the experiment nor in publication process. This research received no Grant from any funding agency.

Conflict of interest

The authors declare that there are no conflicts of interest.


  1. Abdel-Daim MM (2014) Pharmacodynamic interaction of Spirulina platensis with erythromycin in Egyptian Baladi bucks (Capra hircus). Small Rumin Res 120:234–241. doi: 10.1016/j.smallrumres.2014.05.013 CrossRefGoogle Scholar
  2. Abdel-Daim M, Halawa S (2014) Synergistic hepatocardioprotective and antioxidant effects of myrrh and ascorbic acid against diazinon-induced toxicity in rabbits. Int Res J Humanit Eng Pharm Sci 1:1–7Google Scholar
  3. Abdel-Daim M, Funasaka Y, Kamo T, Ooe M, Matsunaka H, Yanagita E, Itoh T, Nishigori C (2010a) Effect of chemical peeling on photocarcinogenesis. J Dermatol 37:864–872. doi: 10.1111/j.1346-8138.2010.00859.x CrossRefGoogle Scholar
  4. Abdel-Daim M, Funasaka Y, Kamo T, Ooe M, Matsunaka H, Yanagita E, Itoh T, Nishigori C (2010b) Preventive effect of chemical peeling on ultraviolet induced skin tumor formation. J Dermatol Sci 60:21–28. doi: 10.1016/j.jdermsci.2010.08.002 CrossRefGoogle Scholar
  5. Abdel-Daim M, Abuzead S, Halawa S (2013) Protective role of Spirulina platensis against acute deltamethrin-induced toxicity in rats. PLoS ONE 8:e72991CrossRefGoogle Scholar
  6. Abdel-Daim MM, Abd Eldaim MA, Mahmoud MM (2014) Trigonella foenum-graecum protection against deltamethrin-induced toxic effects on haematological, biochemical, and oxidative stress parameters in rats. Can J Physiol Pharmacol 1–7. doi: 10.1139/cjpp-2014-0144
  7. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126CrossRefGoogle Scholar
  8. Akash MS, Shen Q, Rehman K, Chen S (2012) Interleukin-1 receptor antagonist: a new therapy for type 2 diabetes mellitus. J Pharm Sci 101:1647–1658. doi: 10.1002/jps.23057 CrossRefGoogle Scholar
  9. Akash MS, Rehman K, Chen S (2013) Role of inflammatory mechanisms in pathogenesis of type 2 diabetes mellitus. J Cell Biochem 114:525–531. doi: 10.1002/jcb.24402 CrossRefGoogle Scholar
  10. Al-Attar AM, Abu Zeid IM (2013) Effect of tea (Camellia sinensis) and olive (Olea europaea L.) leaves extracts on male mice exposed to diazinon. Biomed Res Int 461415. doi: 10.1155/2013/461415
  11. Al-Sayed E, Martiskainen O, Seif El-Din SH, Sabra AN, Hammam OA, El-Lakkany NM, Abdel-Daim MM (2014) Hepatoprotective and antioxidant effect of Bauhinia hookeri extract against carbon tetrachloride-induced hepatotoxicity in mice and characterization of its bioactive compounds by HPLC–PDA–ESI–MS/MS. Biomed Res Int 2014:245171. doi: 10.1155/2014/245171 CrossRefGoogle Scholar
  12. Amin B, Hajhashemi V, Hosseinzadeh H, Abnous K (2012) Antinociceptive evaluation of ceftriaxone and minocycline alone and in combination in a neuropathic pain model in rat. Neuroscience 224:15–25. doi: 10.1016/j.neuroscience.2012.07.058 CrossRefGoogle Scholar
  13. Ashrafi F, Nematbakhsh M, Safari T, Talebi A, Nasri H, Khazaei M, Baradaran-Mahdavi MM, Jafapisheh A, Olia B, Pirhaji O, Hashemi-Nia SJ, Eshraghi F, Pezeshki Z, Mortazavi M (2012) A combination of vitamin C and losartan for cisplatin-induced nephrotoxicity in rats. Iran J Kidney Dis 6:361–365Google Scholar
  14. Azab S, Abdel-Daim M, Eldahshan O (2013) Phytochemical, cytotoxic, hepatoprotective and antioxidant properties of Delonix regialeaves extract. Med Chem Res 22:4269–4277CrossRefGoogle Scholar
  15. Beauchamp D, Theriault G, Grenier L, Gourde P, Perron S, Bergeron Y, Fontaine L, Bergeron MG (1994) Ceftriaxone protects against tobramycin nephrotoxicity. Antimicrob Agents Chemother 38:750–756CrossRefGoogle Scholar
  16. Beutler E, Duron O, Kelly BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888Google Scholar
  17. Boroushaki MT, Arshadi D, Jalili-Rasti H, Asadpour E, Hosseini A (2013) Protective effect of pomegranate seed oil against acute toxicity of diazinon in rat kidney. Iran J Pharm Res 12:821–827Google Scholar
  18. Cakici O, Akat E (2013) Effects of oral exposure to diazinon on mice liver and kidney tissues: biometric analyses of histopathologic changes. Anal Quant Cytol Histol 35:7–16Google Scholar
  19. Carr AC, Frei B (1999) Toward a new recommended dietary allowance for vitamin C based on antioxidant and health effects in humans. Am J Clin Nutr 69:1086–1107Google Scholar
  20. Coulombe JJ, Favreau L (1963) A new simple semimicro method for colorimetric determination of urea. Clin Chem 9:102–108Google Scholar
  21. Dwivedi VK, Bhatanagar A, Chaudhary M (2012) Protective role of ceftriaxone plus sulbactam with VRP1034 on oxidative stress, hematological and enzymatic parameters in cadmium toxicity induced rat model. Interdiscip Toxicol 5:192–200. doi: 10.2478/v10102-012-0032-3 CrossRefGoogle Scholar
  22. Eldahshan OA, Abdel-Daim MM (2014) Phytochemical study, cytotoxic, analgesic, antipyretic and anti-inflammatory activities of Strychnos nux-vomica. Cytotechnology. doi: 10.1007/s10616-014-9723-2 Google Scholar
  23. El-Demerdash FM, Nasr HM (2013) Antioxidant effect of selenium on lipid peroxidation, hyperlipidemia and biochemical parameters in rats exposed to diazinon. J Trace Elem Med Biol 28:89–93. doi: 10.1016/j.jtemb.2013.10.001
  24. El-Demerdash FM, Yousef MI, Zoheir MA (2005) Stannous chloride induces alterations in enzyme activities, lipid peroxidation and histopathology in male rabbit: antioxidant role of vitamin C. Food Chem Toxicol 43:1743–1752. doi: 10.1016/j.fct.2005.05.017 CrossRefGoogle Scholar
  25. Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95CrossRefGoogle Scholar
  26. ElMazoudy RH, Attia AA (2012) Endocrine-disrupting and cytotoxic potential of anticholinesterase insecticide, diazinon in reproductive toxicity of male mice. J Hazard Mater 209–210:111–120. doi: 10.1016/j.jhazmat.2011.12.073 CrossRefGoogle Scholar
  27. Elmazoudy RH, Attia AA, Abdelgawad HS (2011) Evaluation of developmental toxicity induced by anticholinesterase insecticide, diazinon in female rats. Birth Defects Res B Dev Reprod Toxicol 92:534–542. doi: 10.1002/bdrb.20322 CrossRefGoogle Scholar
  28. Funasaka Y, Abdel-Daim M, Kawana S, Nishigori C (2012) Effect of chemical peeling on the skin in relation to UV irradiation. Exp Dermatol 21:31–35. doi: 10.1111/j.1600-0625.2012.01500.x CrossRefGoogle Scholar
  29. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem 126:131–138CrossRefGoogle Scholar
  30. Gunduz O, Oltulu C, Buldum D, Guven R, Ulugol A (2011) Anti-allodynic and anti-hyperalgesic effects of ceftriaxone in streptozocin-induced diabetic rats. Neurosci Lett 491:23–25. doi: 10.1016/j.neulet.2010.12.063 CrossRefGoogle Scholar
  31. Hariri AT, Moallem SA, Mahmoudi M, Memar B, Hosseinzadeh H (2010) Sub-acute effects of diazinon on biochemical indices and specific biomarkers in rats: protective effects of crocin and safranal. Food Chem Toxicol 48:2803–2808. doi: 10.1016/j.fct.2010.07.010 CrossRefGoogle Scholar
  32. Ibrahim A, Abdel Daim M (2015) Modulating effects of Spirulina platensis against tilmicosin-induced cardiotoxicity in mice. Cell J 17 (in press)Google Scholar
  33. Kojo S (2004) Vitamin C: basic metabolism and its function as an index of oxidative stress. Curr Med Chem 11:1041–1064CrossRefGoogle Scholar
  34. Koracevic D, Koracevic G, Djordjevic V, Andrejevic S, Cosic V (2001) Method for the measurement of antioxidant activity in human fluids. J Clin Pathol 54:356–361CrossRefGoogle Scholar
  35. Larkin DJ, Tjeerdema RS (2000) Fate and effects of diazinon. Rev Environ Contam Toxicol 166:49–82Google Scholar
  36. Larsen K (1972) Creatinine assay in the presence of protein with LKB 8600 reaction rate analyser. Clin Chim Acta 38:475–476CrossRefGoogle Scholar
  37. Li SH, Ryu JH, Park SE, Cho YS, Park JW, Lee WJ, Chun YS (2010) Vitamin C supplementation prevents testosterone-induced hyperplasia of rat prostate by down-regulating HIF-1alpha. J Nutr Biochem 21:801–808. doi: 10.1016/j.jnutbio.2009.06.004 CrossRefGoogle Scholar
  38. Liu C, Cao F, Tang QZ, Yan L, Dong YG, Zhu LH, Wang L, Bian ZY, Li H (2010) Allicin protects against cardiac hypertrophy and fibrosis via attenuating reactive oxygen species-dependent signaling pathways. J Nutr Biochem 21:1238–1250. doi: 10.1016/j.jnutbio.2009.11.001 CrossRefGoogle Scholar
  39. Madkour F, Abdel-Daim M (2013) Hepatoprotective and antioxidant activity of dunaliella salina in paracetamol-induced acute toxicity in rats. Indian J Pharm Sci 75:642–648Google Scholar
  40. Mihara M, Uchiyama M (1978) Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem 86:271–278CrossRefGoogle Scholar
  41. Nematbakhsh M, Pezeshki Z, Eshraghi-Jazi F, Ashrafi F, Nasri H, Talebi A, Safari T, Haghighi M, Mansouri A (2012) Vitamin E, vitamin C, or losartan is not nephroprotectant against cisplatin-induced nephrotoxicity in presence of estrogen in ovariectomized rat model. Int J Nephrol 2012:284896. doi: 10.1155/2012/284896 Google Scholar
  42. Neu HC (1985) Relation of structural properties of beta-lactam antibiotics to antibacterial activity. Am J Med 79:2–13CrossRefGoogle Scholar
  43. Neu HC, Meropol NJ, Fu KP (1981) Antibacterial activity of ceftriaxone (Ro 13-9904), a beta-lactamase-stable cephalosporin. Antimicrob Agents Chemother 19:414–423CrossRefGoogle Scholar
  44. Nishikimi M, Appaji N, Yagi K (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun 46:849–854CrossRefGoogle Scholar
  45. Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–169Google Scholar
  46. Ranjbar A, Pasalar P, Abdollahi M (2002) Induction of oxidative stress and acetylcholinesterase inhibition in organophosphorous pesticide manufacturing workers. Hum Exp Toxicol 21:179–182CrossRefGoogle Scholar
  47. Rawls SM, Baron DA, Kim J (2010a) beta-Lactam antibiotic inhibits development of morphine physical dependence in rats. Behav Pharmacol 21:161–164. doi: 10.1097/FBP.0b013e328337be10 CrossRefGoogle Scholar
  48. Rawls SM, Zielinski M, Patel H, Sacavage S, Baron DA, Patel D (2010b) Beta-lactam antibiotic reduces morphine analgesic tolerance in rats through GLT-1 transporter activation. Drug Alcohol Depend 107:261–263. doi: 10.1016/j.drugalcdep.2009.10.010 CrossRefGoogle Scholar
  49. Razavi BM, Hosseinzadeh H, Movassaghi AR, Imenshahidi M, Abnous K (2013) Protective effect of crocin on diazinon induced cardiotoxicity in rats in subchronic exposure. Chem Biol Interact 203:547–555. doi: 10.1016/j.cbi.2013.03.010 CrossRefGoogle Scholar
  50. Rehman K, Akash MS, Azhar S, Khan SA, Abid R, Waseem A, Murtaza G, Sherazi TA (2012) A biochemical and histopathologic study showing protection and treatment of gentamicin-induced nephrotoxicity in rabbits using vitamin C. Afr J Tradit Complement Altern Med 9:360–365Google Scholar
  51. Saleem U, Ahmad B, Rehman K, Mahmood S, Alam M, Erum A (2012) Nephro-protective effect of vitamin C and Nigella sativa oil on gentamicin associated nephrotoxicity in rabbits. Pak J Pharm Sci 25:727–730Google Scholar
  52. Salem H, Olajos EJ (1988) Review of pesticides: chemistry, uses and toxicology. Toxicol Ind Health 4:291–321Google Scholar
  53. Sams C, Cocker J, Lennard MS (2004) Biotransformation of chlorpyrifos and diazinon by human liver microsomes and recombinant human cytochrome P450s (CYP). Xenobiotica 34:861–873. doi: 10.1080/00498250400017273 CrossRefGoogle Scholar
  54. Sun Y (1990) Free radicals, antioxidant enzymes, and carcinogenesis. Free Radic Biol Med 8:583–599CrossRefGoogle Scholar
  55. Tsitsimpikou C, Tzatzarakis M, Fragkiadaki P, Kovatsi L, Stivaktakis P, Kalogeraki A, Kouretas D, Tsatsakis AM (2013) Histopathological lesions, oxidative stress and genotoxic effects in liver and kidneys following long term exposure of rabbits to diazinon and propoxur. Toxicology 307:109–114. doi: 10.1016/j.tox.2012.11.002 CrossRefGoogle Scholar
  56. Whitehead TP, Bevan EA, Miano L, Leonardi A (1991) Defects in diagnostic kits for determination of urate in serum. Clin Chem 37:879–881Google Scholar
  57. Willcox JK, Ash SL, Catignani GL (2004) Antioxidants and prevention of chronic disease. Crit Rev Food Sci Nutr 44:275–295. doi: 10.1080/10408690490468489 CrossRefGoogle Scholar
  58. Yilmaz N, Ilhan S, Naziroglu M, Oktar S, Nacar A, Arica V, Tutanc M (2011) Ceftriaxone ameliorates cyclosporine A-induced oxidative nephrotoxicity in rat. Cell Biochem Funct 29:102–107. doi: 10.1002/cbf.1727 CrossRefGoogle Scholar
  59. Yoshiyama Y, Yazaki T, Beauchamp D, Kanke M (1998) Protective effect of ceftriaxone against the nephrotoxicity of isepamicin administered once daily in rats. Biol Pharm Bull 21:520–523CrossRefGoogle Scholar
  60. Zavon MR (1971) Treatment of organophosphorus and chlorinated hydrocarbon insecticide intoxications. Mod Treat 8:503–510Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Pharmacology Department, Faculty of Veterinary MedicineSuez Canal UniversityIsmailiaEgypt

Personalised recommendations