, Volume 66, Issue 1, pp 159–168 | Cite as

Monitoring of the effects of transfection with baculovirus on Sf9 cell line and expression of human dipeptidyl peptidase IV

  • Özlem Üstün-AytekinEmail author
  • İsmet Deliloğlu Gürhan
  • Kayoko Ohura
  • Teruko Imai
  • Gaye Öngen
Original Research


Human dipeptidylpeptidase IV (hDPPIV) is an enzyme that is in hydrolase class and has various roles in different parts of human body. Its deficiency may cause some disorders in the gastrointestinal, neurologic, endocrinological and immunological systems of humans. In the present study, hDPPIV enzyme was expressed on Spodoptera frugiperda (Sf9) cell lines as a host cell, and the expression of hDPPIV was obtained by a baculoviral expression system. The enzyme production, optimum multiplicity of infection, optimum transfection time, infected and uninfected cell size and cell behavior during transfection were also determined. For maximum hDPPIV (269 mU mL−1) enzyme, optimum multiplicity of infection (MOI) and time were 0.1 and 72 h, respectively. The size of infected cells increased significantly (P < 0.001) after 24 h post infection. The results indicated that Sf9 cell line was applicable to the large scale for hDPPIV expression by using optimized parameters (infection time and MOI) because of its high productivity (4.03 mU m L−1 h−1).


Spodoptera frugiperda (Sf9) Dipeptidyl peptidase IV (DPPIV) Baculovirus Transfection 



This research was partly supported by grant from Japan Student Service Organization (JASSO).


  1. Aertgeerts K, Ye S, Tennant MG, Kraus ML, Rogers J, Sang BC, Skene RJ, Webb DR, Prasad GS (2004) Crystal structure of human dipeptidyl peptidase IV in complex with a decapeptide reveals details on substrate specificity and tetrahedral intermediate formation. Protein Sci 13:412–421CrossRefGoogle Scholar
  2. Bergmann A, Bohuon C (2002) Decrease of serum dipeptidylpeptidase activity in severe sepsis patients: relationship to procalcitonin. Clin Chim Acta 321:123–126CrossRefGoogle Scholar
  3. Brondyk W (2009) Selecting an appropriate method for expressing a recombinant protein. Methods Enzymol 463:131–147Google Scholar
  4. Brudnak M (2001) Genomic multi-level nutrient-sensing pathways. Med Hypotheses 56:194–199CrossRefGoogle Scholar
  5. Brudnak MA, Rimland B, Kerry RE, Dailey M, Taylor R, Stayton B, Waickman F, Waickman M, Pangborn J, Buchholz I (2002) Enzyme-based therapy for autism spectrum disorders–is it worth another look? Med Hypotheses 58:422–428CrossRefGoogle Scholar
  6. Celis JE, Carter N, Simons K, Small JV, Hunter T, Shotton D (2005) Cell biology, four-volume set: a laboratory handbook, vol 1. Elsevier Academic Press, WalthamGoogle Scholar
  7. Chang MJ, Kuzio J, Blissard GW (1999) Modulation of translational efficiency by contextual nucleotides flanking a baculovirus initiator AUG codon. Virology 259:369CrossRefGoogle Scholar
  8. Cunningham DF, O’Connor B (1997) Proline specific peptidases. Biochimica et Biophysica Acta (BBA)—Protein Struct Mol Enzymol 1343(2):160–186CrossRefGoogle Scholar
  9. Demuth H, Heins J (1995) Catalytic mechanism of dipeptidyl peptidase IV. Dipeptidyl Peptidase IV (CD26) In: Fleischer B (Ed) Metabolism and the immune response:pp 1–35Google Scholar
  10. Dobers J, Zimmermann-Kordmann M, Leddermann M, Schewe T, Reutter W, Fan H (2002) Expression, purification, and characterization of human dipeptidyl peptidase IV/CD26 in Sf9 insect cells. Protein Expr Purif 25:527–532CrossRefGoogle Scholar
  11. Doumas A, Van Den Broek P, Affolter M, Monod M (1998) Characterization of the prolyl dipeptidyl peptidase gene (dppIV) from the koji mold Aspergillus oryzae. Appl Environ Microbiol 64:4809–4815Google Scholar
  12. Effio PC, Folgueras-Flatschart A, Montor W, Pernasetti F, Pueyo M, Sogayar M (2003) Expression of functional Anopheles merusα-amylase in the baculovirus/Spodoptera frugiperda system. Insect Mol Biol 12:415–425CrossRefGoogle Scholar
  13. Gotoh T, Fukuhara M, Kikuchi KI (2008) Mathematical model for change in diameter distribution of baculovirus-infected Sf-9 insect cells. Biochem Eng J 40:379–386CrossRefGoogle Scholar
  14. Hitchman RB, Possee RD, King LA (2009) Baculovirus expression systems for recombinant protein production in insect cells. Recent Pat Biotechnol 3:46–54CrossRefGoogle Scholar
  15. Ikonomou L, Schneider YJ, Agathos S (2003) Insect cell culture for industrial production of recombinant proteins. Appl Microbiol Biotechnol 62:1–20CrossRefGoogle Scholar
  16. Iwaki-Egawa S, Watanabe Y, Kikuya Y, Fujimoto Y (1998) Dipeptidyl peptidase IV from human serum: purification, characterization, and N-terminal amino acid sequence. J Biochem 124:428–433CrossRefGoogle Scholar
  17. Jalving R, Godefrooij J, Veen WJ, Ooyen AJJ, Schaap PJ (2005) Characterisation of the Aspergillus niger dapB gene, which encodes a novel fungal type IV dipeptidyl aminopeptidase. Mol Genet Genomics 273:319–325CrossRefGoogle Scholar
  18. Lambeir AM, Proost P, Scharpé S, Meester ID (2002) A kinetic study of glucagon-like peptide-1 and glucagon-like peptide-2 truncation by dipeptidyl peptidase IV, in vitro. Biochem Pharmacol 64:1753–1756CrossRefGoogle Scholar
  19. Langford WS (2003) A comprehensive guide to managing autism. The Autism File. Special Supplement. Slightly changed by Kees de Vries, Drunen, HollandGoogle Scholar
  20. Luckow V (1991) Cloning and expression of heterologous genes in insect cells with baculovirus vectors. In: Prokop A, Bajpai RK, Ho C (eds) Recombinant DNA technology and applications. McGraw-Hill, New York, pp 97–152Google Scholar
  21. Mentlein R (1999) Dipeptidyl-peptidase IV (CD26)-role in the inactivation of regulatory peptides. Regul Pept 85:9–24CrossRefGoogle Scholar
  22. Nishikawa N, Yamaji H, Fukuda H, Dong X, Teruya K, Katakura Y, Zhang Y, Miura T, Daimon Y, Mori T (2003) Preface 1–2 recombinant protein production by the baculovirus–insect cell system in basal media without serum supplementation. Cytotechnology 43:167–168CrossRefGoogle Scholar
  23. Ogay I, Lihoradova O, Azimova SS, Abdukarimov A, Slack J, Lynn D (2006) Transfection of insect cell lines using polyethylenimine. Cytotechnology 51:89–98CrossRefGoogle Scholar
  24. Öngen G, Sargin S, Üstün Ö, Kutlu C, Yücel M (2012) Dipeptidyl peptidase IV production by solid state fermentation using alternative fungal sources. Turk J Biol 36:665–671Google Scholar
  25. Ota T, Itoh A, Tachi H, Kudoh K, Watanabe T, Yamamoto Y, Tadokoro T, Maekawa A (2005) Synthesis of morphiceptin (Tyr-Pro-Phe-Pro-NH2) by dipeptidyl aminopeptidase IV derived from Aspergillus oryzae. J Agric Food Chem 53:6112–6116CrossRefGoogle Scholar
  26. Pérez-Guzmán AE, Cruz y Victoria T, Cruz-Camarillo R, Hernández-Sánchez H (2004) Improvement of fermentation conditions for the production of X-prolyl-dipeptidyl aminopeptidase from Lactococcus lactis. World J Microbiol Biotechnol 20:413–417CrossRefGoogle Scholar
  27. Pham PL, Perret S, Doan HC, Cass B, St-Laurent G, Kamen A, Durocher Y (2003) Large-scale transient transfection of serum-free suspension-growing HEK293 EBNA1 cells: peptone additives improve cell growth and transfection efficiency. Biotechnol Bioeng 84:332–342CrossRefGoogle Scholar
  28. Radner S, Celie PHN, Fuchs K, Sieghart W, Sixma TK, Stornaiuolo M (2012) Transient transfection coupled to baculovirus infection for rapid protein expression screening in insect cells. J Struct Biol 179:46–55Google Scholar
  29. Reichelt K, Knivsberg A (2003) Can the pathophysiology of autism be explained by the nature of the discovered urine peptides? Nutr Neurosci 6:19–28CrossRefGoogle Scholar
  30. Reichelt K, Hole K, Hamberger A, Saelid G, Edminson P, Braestrup C, Lingjaerde O, Ledaal P, Orbeck H (1981) Biologically active peptide-containing fractions in schizophrenia and childhood autism. Adv Biochem Psychopharmacol 28:627Google Scholar
  31. Reinhold D, Goihl A, Wrenger S, Reinhold A, Kühlmann UC, Faust J, Neubert K, Thielitz A, Brocke S, Täger M (2009) Role of dipeptidyl peptidase IV (DP IV)-like enzymes in T lymphocyte activation: investigations in DP IV/CD26-knockout mice. Clin Chem Lab Med 47:268–274CrossRefGoogle Scholar
  32. Sander L, Harrysson A (2007) Using cell size kinetics to determine optimal harvest time for Spodoptera frugiperda and Trichoplusia ni BTI-TN-5B1-4 cells infected with a baculovirus expression vector system expressing enhanced green fluorescent protein. Cytotechnology 54:35–48CrossRefGoogle Scholar
  33. Sandhu KS, Naciri M, Al-Rubeai M (2007) Prediction of recombinant protein production in an insect cell–baculovirus system using a flow cytometric technique. J Immunol Method 325:104–113CrossRefGoogle Scholar
  34. Shattock P, Kennedy A, Rowell F, Berney T (1990) Role of neuropeptides in autism and their relationships with classical neurotransmitters. Brain Dysfunction 3:328–345Google Scholar
  35. Slack JM, Lawrence SD (2002) Purification of DNA for the transfection of a Spodoptera frugiperda cell line. Method Cell Sci 24:155–163CrossRefGoogle Scholar
  36. Slack JM, Dougherty EM, Lawrence SD (2001) A study of the Autographa californica multiple nucleopolyhedrovirus ODV envelope protein p74 using a GFP tag. J Gen Virol 82:2279–2287Google Scholar
  37. Summers MD, Smith GE (1987) A manual of methods for baculovirus vectors and insect cell culture procedures. Texas Agricultural Experiment Station Bulletin, No 1555Google Scholar
  38. Tachi H, Ito H, Ichishima E (1992) An X-prolyl dipeptidyl-aminopeptidase from Aspergillus oryzae. Phytochemistry 31:3707–3709CrossRefGoogle Scholar
  39. Tanaka T, Camerini D, Seed B, Torimoto Y, Dang N, Kameoka J, Dahlberg H, Schlossman S, Morimoto C (1992) Cloning and functional expression of the T cell activation antigen CD26 [published erratum appears in J Immunol 1993 Mar 1; 150 (5): 2090]. J Immunol 149:481–486Google Scholar
  40. Thoma R, Löffler B, Stihle M, Huber W, Ruf A, Hennig M (2003) Structural basis of proline-specific exopeptidase activity as observed in human dipeptidyl peptidase-IV. Structure 11:947–959CrossRefGoogle Scholar
  41. Urade M, Uematsu T, Mima T, Ogura T, Matsuya T (2006) Serum dipeptidyl peptidase (DPP) IV activity in hamster buccal pouch carcinogenesis with 9, 10-dimethyl-1, 2-benzanthracene. J Oral Pathol Med 21:109–112CrossRefGoogle Scholar
  42. Üstün Ö, Öngen G (2012) Production and separation of dipeptidyl peptidase IV from Lactococcus lactis: scale up for industrial production. Bioprocess Biosyst Eng 35(8):1417–1427Google Scholar
  43. Wilkinson RE, Houston DB (2001) Compositions containing dipepitidyl peptidase IV and tyrosinase or phenylalaninase for reducing opioid-related symptons. U.S. Patent No 6,251,391. U.S. Patent and Trademark Office, Washington, DCGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Özlem Üstün-Aytekin
    • 1
    • 2
    • 3
    Email author
  • İsmet Deliloğlu Gürhan
    • 2
  • Kayoko Ohura
    • 3
  • Teruko Imai
    • 3
  • Gaye Öngen
    • 2
  1. 1.Department of Food Engineering, Faculty of EngineeringPamukkale UniversityKinikli, DenizliTurkey
  2. 2.Bioengineering Department, Faculty of EngineeringEge UniversityBornova, IzmirTurkey
  3. 3.Graduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan

Personalised recommendations