Cytotechnology

, Volume 63, Issue 2, pp 119–131 | Cite as

Suppressive effects of electrolyzed reduced water on alloxan-induced apoptosis and type 1 diabetes mellitus

  • Yupin Li
  • Takeki Hamasaki
  • Noboru Nakamichi
  • Taichi Kashiwagi
  • Takaaki Komatsu
  • Jun Ye
  • Kiichiro Teruya
  • Masumi Abe
  • Hanxu Yan
  • Tomoya Kinjo
  • Shigeru Kabayama
  • Munenori Kawamura
  • Sanetaka Shirahata
Original Research

Abstract

Electrolyzed reduced water, which is capable of scavenging reactive oxygen species, is attracting recent attention because it has shown improved efficacy against several types of diseases including diabetes mellitus. Alloxan produces reactive oxygen species and causes type 1 diabetes mellitus in experimental animals by irreversible oxidative damage to insulin-producing β-cells. Here, we showed that electrolyzed reduced water prevented alloxan-induced DNA fragmentation and the production of cells in sub-G1 phase in HIT-T15 pancreatic β-cells. Blood glucose levels in alloxan-induced type 1 diabetes model mice were also significantly suppressed by feeding the mice with electrolyzed reduced water. These results suggest that electrolyzed reduced water can prevent apoptosis of pancreatic β-cells and the development of symptoms in type 1 diabetes model mice by alleviating the alloxan-derived generation of reactive oxygen species.

Keywords

Electrolyzed reduced water Alloxan Type 1 diabetes mellitus Reactive oxygen species HIT-T15 cells 

Abbreviations

ALX

Alloxan

BSA

Bovine serum albumin

EDTA

Ethylenediaminetetraacetic acid

ERW

Electrolyzed reduced water

FBS

Fetal bovine serum

DM

Diabetes mellitus

HBSS

Hank’s balanced salt solution

HEPES

4-[2-hydroxyethyl]-1-piperazineethane-sulfonic acid

PBS

Phosphate buffered saline

PI

Propidium iodide

ROS

Reactive oxygen species

T1DM

Type 1 diabetes mellitus

T2DM

Type 2 diabetes mellitus

TdT

Terminal deoxynucleotidyl transferase

Supplementary material

10616_2010_9317_MOESM1_ESM.doc (246 kb)
Supplementary material 1 (DOC 246 kb)

References

  1. Aiken JD III, Finke RG (1999) A review of modern transition-metal nanoclusters: their synthesis, characterization, and application in catalysis. J Mol Catal A Chem 145:1–44CrossRefGoogle Scholar
  2. Bernstein C, Bernstein H, Payne CM, Garewal H (2002) DNA repair/pro-apoptotic dual-role proteins in five major DNA repair pathways: fail-safe protection against carcinogenesis. Mutat Res 511:145–178CrossRefGoogle Scholar
  3. Bresson D, Von Herrath M (2007) Moving towards efficient therapies in type 1 diabetes: to combine or not to combine? Autoimmun Rev 6:315–322CrossRefGoogle Scholar
  4. Brömme HJ, Weinandy R, Peschke E (2005) Influence of oxygen concentration on redox cycling of alloxan and dialuric acid. Horm Metab Res 37:729–733CrossRefGoogle Scholar
  5. Cnop M, Welsh N, Jonas J-C, Jörns A, Lenzen S, Eizirik DL (2005) Mechanisms of pancreatic β-cell death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes 54:97–107CrossRefGoogle Scholar
  6. Curtin JF, Donovan M, Cotter TG (2002) Regulation and measurement of oxidative stress in apoptosis. J Immunol Methods 265:49–72CrossRefGoogle Scholar
  7. Eizirik DL, Darville MI (2001) β-cell apoptosis and defense mechanisms. Lessons from type 1 diabetes. Diabetes 50:S64–S69CrossRefGoogle Scholar
  8. El-Alfy AT, Ahmed AAE, Fatani AJ (2005) Protective effect of red grape seeds proanthocyanidins against induction of diabetes by alloxan in rats. Pharmacol Res 52:264–270CrossRefGoogle Scholar
  9. Elsner M, Tiedge M, Guldbakke B, Munday R, Lenzen S (2002) Importance of the GLUT2 glucose transporter for pancreatic beta cell toxicity of alloxan. Diabetologia 45:1542–1549CrossRefGoogle Scholar
  10. Elsner M, Gurgul-Convey E, Lenzen S (2006) Relative importance of cellular uptake and reactive oxygen species for the toxicity of alloxan and dialuric acid to insulin-producing cells. Free Radic Biol Med 41:825–834CrossRefGoogle Scholar
  11. Fukuda K, Asoh S, Ishikawa M, Yamamoto Y, Ohsawa I, Ohta S (2007) Inhalation of hydrogen gas suppresses hepatic injury caused by ischemia/reperfusion through reducing oxidative stress. Biochem Biophys Res Commun 361:670–674CrossRefGoogle Scholar
  12. Gai W, Schott-Ohly P, Schulte im Walde S, Gleichmann H (2004) Differential target molecules for toxicity induced by streptozotocin and alloxan in pancreatic islets of mice in vitro. Exp Clin Endocrinol Diabetes 112:29–37CrossRefGoogle Scholar
  13. Gurgul E, Lortz S, Tiedge M, Jörns A, Lenzen S (2004) Mitochondrial catalase overexpression protects insulin-producing cells against toxicity of reactive oxygen species and proinflammatory cytokines. Diabetes 53:2271–2280CrossRefGoogle Scholar
  14. Hamasaki T, Kashiwagi T, Imada T, Nakamichi N, Aramaki S, Toh K, Morisawa S, Shimakoshi H, Hisaeda Y, Shirahata S (2008) Kinetic analysis of superoxide anion radical-scavenging and hydroxyl radical-scavenging activities of platinum nanoparticles. Langmuir 24:7354–7364CrossRefGoogle Scholar
  15. Hayashida K, Sano M, Ohsawa I, Shinmura K, Tamaki K, Kimura K, Endo J, Katayama T, Kawamura A, Kohsaka S, Makino S, Ohta S, Ogawa S, Fukuda K (2007) Inhalation of hydrogen gas reduces infarct size in the rat model of myocardial ischemia-reperfusion injury. Biochem Biophys Res Commun 373:30–35CrossRefGoogle Scholar
  16. Jörns A, Günther A, Hedrich H-J, Wedekind D, Tiedge M, Lenzen S (2005) Immune cell infiltration, cytokine expression, and β-cell apoptosis during the development of type 1 diabetes in the spontaneously diabetic LEW.1AR1/Ztm- iddm rat. Diabetes 54:2041–2052CrossRefGoogle Scholar
  17. Kajita M, Hikosaka K, Iitsuka M, Kanayama A, Toshima N, Miyamoto Y (2007) Platinum nanoparticle is a useful scavenger of superoxide anion and hydrogen peroxide. Free Radical Res 41:615–626CrossRefGoogle Scholar
  18. Kaneto H, Fujii J, Myint T, Miyazawa N, Islam KN, Kawasaki Y, Suzuki K, Nakamura M, Tatsumi H, Yamasaki Y, Taniguchi N (1996) Reducing sugars trigger oxidative modification and apoptosis in pancreatic β-cells by provoking oxidative stress through the glycation reaction. Biochem J 320:855–863Google Scholar
  19. Kay TW, Thomas HE, Harrison LC, Allison J (2000) The beta cell in autoimmune diabetes: many mechanisms and pathways of loss. Trends Endocrinol Metab 11:11–15CrossRefGoogle Scholar
  20. Kim M-J, Kim HK (2006) Anti-diabetic effects of electrolyzed reduced water in streptozotocin-induced and genetic diabetic mice. Life Sci 79:2288–2292CrossRefGoogle Scholar
  21. Kim J, Takahashi M, Shimizu T, Shirasawa T, Kajita M, Kanayama A, Miyamoto Y (2008) Effects of a potent antioxidant, platinum nanoparticle, on the lifespan of Caenorhabditis elegans. Mech Ageing Dev 129:322–331CrossRefGoogle Scholar
  22. Klöppel G, Clemens A (1997) Insulin-dependent diabetes mellitus: islet changes in relation to etiology and pathogenesis. Endocr Pathol 8:273–282CrossRefGoogle Scholar
  23. Kuzuya T, Nakagawa S, Satoh J, Kanazawa Y, Iwamoto Y, Kobayashi M, Nanjo K, Sasaki A, Seino Y, Ito C, Shima K, Nonaka K, Kadowaki T (2002) Report of the Committee on the classification and diagnostic criteria of diabetes mellitus. Diabetes Res Clin Pract 55:65–85CrossRefGoogle Scholar
  24. Lenzen S, Munday R (1991) Thiol-group reactivity, hydrophilicity and stability of alloxan, its reduction products and its n-methyl derivatives and a comparison with ninhydrin. Biochem Pharmacol 42:1385–1391CrossRefGoogle Scholar
  25. Lenzen S, Drinkgern J, Tiedge M (1996) Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radic Biol Med 20:463–466CrossRefGoogle Scholar
  26. Li YP, Nishimura T, Teruya K, Maki T, Komatsu T, Hamasaki T, Kashiwagi T, Kabayama S, Shim SY, Katakura Y, Osada K, Kawahara T, Otsubo K, Morisawa S, Ishii Y, Gadek Z, Shirahata S (2002) Protective mechanism of reduced water against alloxan-induced pancreatic β-cell damage: scavenging effect against reactive oxygen species. Cytotechnology 40:139–149CrossRefGoogle Scholar
  27. Lortz S, Tiedge M (2003) Importance of mitochondrial superoxide dismutase expression in insulin-producing cells for the toxicity of reactive oxygen species and proinflammatory cytokines. Free Radic Biol Med 34:683–688CrossRefGoogle Scholar
  28. Lortz S, Gurgul-Convey E, Lenzen S, Tiedge M (2005) Importance of mitochondrial superoxide dismutase expression in insulin-producing cells for the toxicity of reactive oxygen species and proinflammatory cytokines. Diabetologia 48:1541–1548CrossRefGoogle Scholar
  29. Nathan DM (2007) Finding new treatments for diabetes—how many, how fast…how good? N Engl J Med 356:437–440CrossRefGoogle Scholar
  30. Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C (1991) A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 139:271–279CrossRefGoogle Scholar
  31. Nissen SE, Wolski K (2007) Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 356:2457–2471CrossRefGoogle Scholar
  32. Oda M, Kusumoto K, Teruya K, Hara T, Maki S, Kabayama S, Katakura Y, Otsubo K, Morisawa S, Hayashi H, Ishii Y, Shirahata S (1999) Electrolyzed and natural reduced water exhibit insulin-like activity on glucose uptake into muscle cells and adipocytes. In: Bernard A, Griffiths B, Noe W, Wurm F (eds) Animal cell technology: products from cells, Cells as Products. Kluwer Academic Publishers, The Netherlands, pp 425–427Google Scholar
  33. Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, Yamagata K, Katsura K, Katayama Y, Asoh S, Ohta S (2006) Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nature Med 13:688–694Google Scholar
  34. Pennathur S, Heinecke JW (2007) Mechanisms for oxidative stress in diabetic cardiovascular disease. Antioxid Redox Signal 9:955–969CrossRefGoogle Scholar
  35. Sakurai K, Katoh M, Someno K, Fujimoto Y (2001) Apoptosis and mitochondrial damage in INS-1 cells treated with alloxan. Biol Pharm Bull 24:876–882CrossRefGoogle Scholar
  36. Sakurai K, Nabeyama A, Fujimoto Y (2006) Ascorbate-mediated iron release from ferritin in the presence of alloxan. Biometals 19:323–333CrossRefGoogle Scholar
  37. Schulte im Walde S, Dohle C, Schott-Ohly P, Gleichmann H (2002) Molecular target structures in alloxan-induced diabetes in mice. Life Sci 71:1681–1694CrossRefGoogle Scholar
  38. Shirahata S (2002) Reduced water for prevention of diseases. In: Shirahata S, Teruya K, Katakura Y (eds) Animal cell technology: basic & applied aspects, vol 12. Kluwer Academic Publishers, The Netherlands, pp 25–30Google Scholar
  39. Shirahata S (2004) Reduced water. In: The characteristic and advanced technology of water—for agriculture, foods, and medicines (in Japanese). N.T.S., Tokyo, pp. 33–45Google Scholar
  40. Shirahata S, Kabayama S, Nakano M, Miura T, Kusumoto K, Gotoh M, Hayashi H, Otsubo K, Morisawa S, Katakura Y (1997) Electrolyzed-reduced water scavenges active oxygen species and protects DNA from oxidative damage. Biochem Biophys Res Commun 234:269–274CrossRefGoogle Scholar
  41. Sigfrid LA, Cunningham JM, Beeharry N, Borg LAH, Hernandez ALR, Carlsson C, Bone AJ, Green IC (2004) Antioxidant enzyme activity and mRNA expression in the islets of Langerhans from the BB/S rat model of type 1 diabetes and an insulin-producing cell line. J Mol Med 82:325–335CrossRefGoogle Scholar
  42. Szkudelski T (2001) The mechanism of alloxan and streptozotocin action in β-cells of the rat pancreas. Physiol Res 50:536–546Google Scholar
  43. Takasu N, Asawa T, Komiya I, Nagasawa Y, Yamada T (1991) Alloxan-induced DNA strand breaks in pancreatic islets. J Biol Chem 266:2112–2114Google Scholar
  44. Toniolo A, Onodera T, Yoon J-W, Notkins AL (1980) Induction of diabetes by cumulative environmental insults from viruses and chemicals. Nature 288:383–385CrossRefGoogle Scholar
  45. Valko M, Leibfritz D, Moncola J, Cronin MTD, Mazura M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84CrossRefGoogle Scholar
  46. Washburn MP, Wells WW (1997) Glutathione dependent reduction of alloxan to dialuric acid catalyzed by thioltransferase (glutaredoxin): a possible role for thioltransferase in alloxane toxicity. Free Radic Biol Med 23:563–570CrossRefGoogle Scholar
  47. Watzky MA, Finke RG (1997) Transition metal nanocluster formation kinetic and mechanistic studies. A new mechanism when hydrogen is the reductant: slow, continuous nucleation and fast autocatalytic surface growth. J Am Chem Soc 119:10382–10400CrossRefGoogle Scholar
  48. Winterbourn CC, Munday R (1989) Glutathione-mediated redox cycling of alloxan. Biochem Pharmacol 38:271–2771CrossRefGoogle Scholar
  49. Yan H, Tian H, Kinjo T, Hamasaki T, Tomimatsu K, Nakamichi N, Teruya K, Kabayama S, Shirahata S (2010) Extension of the lifespan of Caenorhabditis elegans by the use of electrolyzed reduced water. Biosci Biotech Biochem 74:2011–2015Google Scholar
  50. Yaturu S, Bryant B, Jain SK (2007) Thiazolidinedione treatment decreases bone mineral density in type 2 diabetic men. Diabetes Care 30:1574–1576CrossRefGoogle Scholar
  51. Ye J, Li Y, Hamasaki T, Nakamichi N, Komatsu T, Kashiwagi T, Teruya K, Nishikawa R, Kawahara T, Osada K, Toh K, Abe M, Tian H, Kabayama S, Otsubo K, Morisawa S, Katakura Y, Shirahata S (2008) Inhibitory effect of electrolyzed reduced water on tumor angiogenesis. Biol Pharm Bull 31:19–26CrossRefGoogle Scholar
  52. Zhang H, Ollinger K, Brunk U (1995) Insulinoma cells in culture show pronounced sensitivity to alloxan-induced oxidative stress. Diabetologia 38:635–641CrossRefGoogle Scholar
  53. Zhang H-N, Hea J-H, Yuanb L, Lin Z-B (2003) In vitro and in vivo protective effect of Ganoderma lucidum polysaccharides on alloxan-induced pancreatic islets damage. Life Sci 73:2307–2319CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Yupin Li
    • 1
    • 2
  • Takeki Hamasaki
    • 1
  • Noboru Nakamichi
    • 3
  • Taichi Kashiwagi
    • 1
  • Takaaki Komatsu
    • 1
  • Jun Ye
    • 1
    • 4
  • Kiichiro Teruya
    • 1
    • 5
  • Masumi Abe
    • 1
  • Hanxu Yan
    • 5
  • Tomoya Kinjo
    • 5
  • Shigeru Kabayama
    • 3
  • Munenori Kawamura
    • 6
  • Sanetaka Shirahata
    • 1
    • 5
  1. 1.Department of Bioscience and Biotechnology, Faculty of AgricultureKyushu UniversityFukuokaJapan
  2. 2.School of Life SciencesNanchang University of Science and TechnologyNanchangPeople’s Republic of China
  3. 3.Nihon Trim Co LtdOsakaJapan
  4. 4.School of Life ScienceXiamen UniversityFujianPeople’s Republic of China
  5. 5.Graduate School of Systems Life SciencesKyushu UniversityFukuokaJapan
  6. 6.Kyowa HospitalKobeJapan

Personalised recommendations