Advertisement

Cytotechnology

, Volume 59, Issue 1, pp 31–44 | Cite as

CD90 Expression on human primary cells and elimination of contaminating fibroblasts from cell cultures

  • Lynn KisselbachEmail author
  • Michael Merges
  • Alexis Bossie
  • Ann Boyd
Method in Cell Science

Abstract

Cluster Differentiation 90 (CD90) is a cell surface glycoprotein originally identified on mouse thymocytes. Although CD90 has been identified on a variety of stem cells and at varying levels in non-lymphoid tissues such as on fibroblasts, brain cells, and activated endothelial cells, the knowledge about the levels of CD90 expression on different cell types, including human primary cells, is limited. The goal of this study was to identify CD90 as a human primary cell biomarker and to develop an efficient and reliable method for eliminating unwanted or contaminating fibroblasts from human primary cell cultures suitable for research pursuant to cell based therapy technologies.

Keywords

CD90 expression Human primary cell cultures Elimination of contaminating fibroblasts Magnetic bead cell separation 

Notes

Acknowledgments

This work was supported and by Lonza Walkersville, Inc. and Hood College; all support is greatly appreciated. We thank Kim Warren, Ali Mohamed, Kim Roberts, Joseph Finny and Chris Elias for all of their help and support throughout this study.

References

  1. Araki H, Yoshinaga K, Boccuni P, Zhao Y, Hoffman R, Mahmud N (2007) Chromatin-modifying agents permit human hematopoietic stem cells to undergo multiple cell divisions while retaining their repopulation potential. Blood 109:3570–3580. doi: 10.1182/blood-2006-07-035287 CrossRefGoogle Scholar
  2. Clark RA, Springer TA (1999) Protein reviews on the Web: CD90Google Scholar
  3. Haack-Sorensen M, Friis T, Bindslev L, Mortensen S, Johnsen HE, Kastrup J (2007) Comparison of different culture conditions for human mesenchymal stromal cells for clinical stem cell therapy. Scan J Clin Lab Invest Sep 12:1–17Google Scholar
  4. Iacoviello L, Kolpakov V, Salvatore L, Amore C, Pintucci G, Gaetano Gd, Donati MB (1995) Human endothelial cell damage by neutrophil-derived cathepsin g role of cytoskeleton rearrangement and matrix-bound plasminogen activator inhibitor-1. Arterioscler Thromb Vasc Biol 15:2037–2046Google Scholar
  5. Ko KS, Arora PD, McCulloch AG (2001) Cadherins mediate intercellular mechanical signaling in fibroblasts by activation of stretch-sensitive calcium-permeable channels. J Biol Chem 276:35967–35977CrossRefGoogle Scholar
  6. Leik CE, Willey A, Graham MF, Walsh SW (2004) Isolation and culture of arterial smooth muscle cells from human placenta. Hypertension 43:837–840. doi: 10.1161/01.HYP.0000119191.33112.9c CrossRefGoogle Scholar
  7. Lonza (2007) Cambrex bioproducts catalog, Lonza IncGoogle Scholar
  8. Lozzio CB, Lozzio BB (1975) Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood 45:321–334Google Scholar
  9. Mason JC, Yarwood H, Tarnok A, Sugars K, Harrison A, Robinson PJ, Haskard DO (1996) Human Thy-1 is cytokine-inducible on vascular endothelial cells and is a signaling molecule regulated by protein kinase c. J Immunol 157:874–883Google Scholar
  10. McKay BS, Burke JM (1994) Separation of phenotypically distinct subpopulations of cultured human retinal pigment epithelial cells. Exp Cell Res 213:85–92. doi: 10.1006/excr.1994.1176 CrossRefGoogle Scholar
  11. Michiels C (2003) Endothelial cell functions. J Cell Physiol 196:430–443. doi: 10.1002/jcp.10333 CrossRefGoogle Scholar
  12. Nakamura Y, Muguruma Y, Yahata T, Miyatake H, Sakai D, Mochida J, Hotta T, Ando K (2006) Expression of CD90 on keratinocyte stem/progenitor cells. Br J Dermatol 154:1062–1070. doi: 10.1111/j.1365-2133.2006.07209.x CrossRefGoogle Scholar
  13. Nardone M, Bergmann E, Cook L, Leitner W, Leppert G, Mostbock S, Brown F (2005) Flow cytometry: principles and methods. BIO-TRAC Foundation for advanced education in the sciences, IncGoogle Scholar
  14. Pal K, Grover P (1983) A simple method for the removal of contaminating fibroblasts from cultures of rat mammary epithelial cells. Cell Biol Int Rep 7:779–783. doi: 10.1016/0309-1651(83)90181-9 CrossRefGoogle Scholar
  15. Peirson SN, Bovee-Geurts PHM, Lupi D, Jeffrey G, DeGrip WJ, Foster RG (2004) Expression of the candidate circadian photopigment melanopsin (Opn4) in the mouse retinal pigment epithelium. Brain Res Mol Brain Res 123:132–135. doi: 10.1016/j.molbrainres.2004.01.007 CrossRefGoogle Scholar
  16. Polgar S, Ng J (2007) A critical analysis of evidence for using sham surgery in Parkinson’s disease: implications for public health. Aust N Z J Public Health 31:270–274. doi: 10.1111/j.1467-842X.2007.00060.x CrossRefGoogle Scholar
  17. Rege TA, Hagood JS (2006) Thy-1 as a regulator of cell–cell and cell–matrix interactions in axon regeneration, apoptosis, adhesion, migration, cancer, and fibrosis. FASEB J 20:1045–1054. doi: 10.1096/fj.05-5460rev CrossRefGoogle Scholar
  18. Saalbach A, Haustein U, Anderegg U (2000) A ligand of human Thy-1 is localized on polymorphonuclear leukocytes and monocytes and mediates the binding to activated Thy-1-positive microvascular endothelial cells and fibroblasts. J Invest Dermatol 115:882–888. doi: 10.1046/j.1523-1747.2000.00104.x CrossRefGoogle Scholar
  19. Sedov VM, Andreev DY, Smirnova TD, Paramonov BA, Enkina TN, Sominina AA, Kiselev OI, Suissi YY, Lebedev LV (2007) The efficacy of cell therapy in the treatment of patients with trophic venous ulcers of the lower limbs. Angiol Sosud Khir 13(1):65–75. doi: 10.1159/000103598 Google Scholar
  20. Tao Z, Li L (2007) Cell therapy in congestive heart failure. J Zhejiang Univ Sci B 8:647–660. doi: 10.1631/jzus.2007.B0647 CrossRefGoogle Scholar
  21. Wetzel A, Wetzig T, Haustein UF, Sticherling M, Anderegg U, Simon JC, Saalbach A (2006) Increased neutrophil adherence in psoriasis: role of the human endothelial cell receptor Thy-1 (CD90). J Invest Dermatol 126:441–452. doi: 10.1038/sj.jid.5700072 CrossRefGoogle Scholar
  22. Wittmann M, Purwar R, Hartmann C, Gutzmer R, Werfel T (2005) Human keratinocytes respond to Interleukin-18: implication for the course of chronic inflammatory skin diseases. J Invest Dermatol 124:1225–1233. doi: 10.1111/j.0022-202X.2005.23715.x CrossRefGoogle Scholar
  23. Zhu SN, Nolle B, Duncker G (2001) Coordinating cell proliferation and differentiation. Curr Opin Genet Dev 10:91–97. doi: 10.1016/S0959-437X(00)00162-3 CrossRefGoogle Scholar
  24. Zucchini A, Del Zotto G, Brando B, Canonico B (2001) CD90. J Biol Regul Homeost Agents 15:82–85Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Lynn Kisselbach
    • 1
    Email author
  • Michael Merges
    • 1
  • Alexis Bossie
    • 2
  • Ann Boyd
    • 3
  1. 1.Department of Cell TherapyLonza Walkersville, Inc.WalkersvilleUSA
  2. 2.Department of Media ServicesLonza Walkersville, Inc.WalkersvilleUSA
  3. 3.Department of BiologyHood CollegeFrederickUSA

Personalised recommendations