Advertisement

Cytotechnology

, Volume 58, Issue 3, pp 153–162 | Cite as

Characterization of human skin-derived mesenchymal stem cell proliferation rate in different growth conditions

  • Una RiekstinaEmail author
  • Ruta Muceniece
  • Inese Cakstina
  • Indrikis Muiznieks
  • Janis AncansEmail author
Original Research

Abstract

This study investigated conditions for optimal in vitro propagation of human skin-derived mesenchymal stem cells (S-MSC). Forty primary skin-derived precursor cell (SKP) cultures were established from both male and female donors (age 29–65 years) and eight of them were randomly selected for in-depth characterization. Effects of basic fibroblast growth factor (FGF-2), epidermal growth factor (EGF), leukemia inhibiting factor (LIF) and dibutyryl-cyclic adenosine monophosphate (db-cAMP) on S-MSC proliferation were investigated. Primary SKP cultures were >95% homogenous for CD90, CD73, and CD105 marker expression enabling to classify these cells as S-MSC. FGF-2 dose-dependent stimulation was observed in low serum medium only, whereas EGF neither stimulated S-MSC proliferation nor potentates the effect of FGF-2. Pronounced donor to donor differences among S-MSC cultures were observed in 3-day proliferation assay. This study demonstrates that homogenous S-MSC populations can be reproducibly isolated from individual donors of different age. Optimal cell culture conditions for in vitro propagation of S-MSC are B27 supplemented or low serum media with FGF-2 (4 ng/ml). EGF and LIF as well as db-cAMP are dispensable for S-MSC proliferation.

Keywords

Skin-derived mesenchymal stem cells (S-MSC) Proliferation FGF-2 EGF db-cAMP FBS FACS 

Notes

Acknowledgments

We thank Dr. Stengrevics, Riga Eastern Hospital, and Dr. Jankovskis, Experimental and Clinical Medicine Institute, University of Latvia, for help with tissue samples, and Dr. Dambrova and Dr. Liepinsh from Latvian Institute of Organic Synthesis for collaboration. The presented work was supported by the European Regional Development Fund (ERDF) project No.VPD/ERAF/CFLA/05/APK/2.5.2./000072/036.

References

  1. Ancans J, Tobin DJ, Hoogduijn MJ et al (2001) Melanosomal pH controls rate of melanogenesis, eumelanin/phaeomelanin ratio and melanosome maturation in melanocytes and melanoma cells. Exp Cell Res 268:26–35. doi: 10.1006/excr.2001.5251 CrossRefGoogle Scholar
  2. Belicchi M, Pisati F, Lopa R et al (2004) Human skin-derived stem cells migrate throughout forebrain and differentiate into astrocytes after injection into adult mouse brain. J Neurosci Res 77:475–486. doi: 10.1002/jnr.20151 CrossRefGoogle Scholar
  3. Blanpain C, Fuchs E (2006) Epidermal stem cells of the skin. Annu Rev Cell Dev Biol 22:339–373. doi: 10.1146/annurev.cellbio.22.010305.104357 CrossRefGoogle Scholar
  4. Brown J, Greaves MF, Molgaard HV (1991) The gene encoding the stem cell antigen, CD34, is conserved in mouse and expressed in haemopoietic progenitor cell lines, brain, and embryonic fibroblasts. Int Immunol 3(2):175–184. doi: 10.1093/intimm/3.2.175 CrossRefGoogle Scholar
  5. Chachques JC, Herreros J, Trainini J et al (2004) Autologous human serum for cell culture avoids the implantation of cardioverter-defibrillators in cellular cardiomyoplasty. Int J Cardiol 95(suppl 1):S29–S33. doi: 10.1016/S0167-5273(04)90009-5 CrossRefGoogle Scholar
  6. Doerr HW, Cinatl CA, Sturmer M et al (2003) Prions and orthopedic surgery. Infection 31:163–171Google Scholar
  7. Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317. doi: 10.1080/14653240600855905 CrossRefGoogle Scholar
  8. Fernandes KJ, McKenzie IA, Mill P et al (2004) A dermal niche for multipotent adult skin-derived precursor cells. Nat Cell Biol 6(11):1082–1093. doi: 10.1038/ncb1181 CrossRefGoogle Scholar
  9. Fuchs E, Tumbar T, Guasch G (2004) Socializing with the neighbours: stem cells and their niche. Cell 41:683–686Google Scholar
  10. Joannides A, Gaughwin P, Schwiening C et al (2004) Efficient generation of neural precursors from adult human skin: astrocytes promote neurogenesis from skin-derived stem cells. Lancet 364:172–178. doi: 10.1016/S0140-6736(04)16630-0 CrossRefGoogle Scholar
  11. Kaiser S, Hackanson B, Follo M et al (2007) BM cells giving rise to MSC in culture have a heterogeneous CD34 and CD45 phenotype. Cytotherapy 9(5):439–450. doi: 10.1080/14653240701358445 CrossRefGoogle Scholar
  12. Liang CJ, Ives HE, Yang CM et al (2008) 20-HETE inhibits the proliferation of vascular smooth muscle cells via transforming growth factor. J Lipid Res 49(1):66–73. doi: 10.1194/jlr.M700155-JLR200 CrossRefGoogle Scholar
  13. Liu Y, Song Z, Zhao Y et al (2006) A novel chemical-defined medium with bFGF and N2B27 supplements supports undifferentiated growth in human embryonic stem cells. Biochem Biophys Res Commun 346:131–139. doi: 10.1016/j.bbrc.2006.05.086 CrossRefGoogle Scholar
  14. Mannello P, Tonti GA (2007) Concice review: no breakthroughs for human mesenchymal and embryonic stem cell culture: conditioned medium, feeder layer, or feeder-free; medium with fetal calf serum, human serum, or enriched plasma; serum-free, serum replacement nonconditioned medium, or ad hoc formula? All that glitters is not gold! Stem Cells 25:1603–1609. doi: 10.1634/stemcells.2007-0127 CrossRefGoogle Scholar
  15. Metcalf D (2003) The unsolved enigmas of leukemia inhibitory factor. Stem Cells 21(1):5–14. doi: 10.1634/stemcells.21-1-5 CrossRefGoogle Scholar
  16. Nelson AD, Svendsen CN (2006) Low concentrations of extracellular FGF-2 are sufficient but not essential for neurogenesis from human neural progenitor cells. Mol Cell Neurosci 33(1):29–35. doi: 10.1016/j.mcn.2006.06.003 CrossRefGoogle Scholar
  17. Oda K, Matsuoka Y, Funahashi A et al (2005) A comprehensive pathway map of epidermal growth factor receptor signaling. Mol Syst Biol 1:2005.0010. doi: 10.1038/msb4100014
  18. Ohyama M, Terunuma A, Tock CL et al (2006) Characterization and isolation of stem cell-enriched human hair follicle bulge cells. J Clin Invest 116(1):249–260. doi: 10.1172/JCI26043 CrossRefGoogle Scholar
  19. Okada-Ban M, Thiery JP, Jouanneau J (2000) Fibroblast growth factor-2. Int J Biochem Cell Biol 32(3):263–267. doi: 10.1016/S1357-2725(99)00133-8 CrossRefGoogle Scholar
  20. Raposio E, Guida C, Baldelli I et al (2007) Characterization of multipotent cells from human adult hair follicles. Toxicol In Vitro 21(2):320–323. doi: 10.1016/j.tiv.2006.07.017 CrossRefGoogle Scholar
  21. Rittie L, Fisher GJ (2005) Isolation and culture of skin fibroblasts. Methods Mol Med 117:83–98Google Scholar
  22. Schumm MA, Castellanos DA, Frydel BR et al (2002) Enhanced viability and neuronal differentiation of neural progenitors by chromaffin cell co-culture. Brain Res Dev 137(2):115–125. doi: 10.1016/S0165-3806(02)00415-7 CrossRefGoogle Scholar
  23. Shahdadfar A, Fronssdal K, Haug T et al (2005) In vitro expansion of human mesenchymal stem cells: choice of serum is a determinant of cell proliferation, differentiation, gene expression, and transcriptome stability. Stem Cells 23:1357–1366. doi: 10.1634/stemcells.2005-0094 CrossRefGoogle Scholar
  24. Shih DT, Lee DC, Chen SC et al (2005) Isolation and characterization of neurogenic mesenchymal stem cells in human scalp tissue. Stem Cells 23(7):1012–1020. doi: 10.1634/stemcells.2004-0125 CrossRefGoogle Scholar
  25. Shihabuddin LS, Ray J, Gage FH (1997) FGF-2 is sufficient to isolate progenitors found in the adult mammalian spinal cord. Exp Neurol 148:577–586. doi: 10.1006/exnr.1997.6697 CrossRefGoogle Scholar
  26. Sotiropoulou PA, Perez SA, Salagianni M et al (2006) Cell culture medium composition and translational adult bone marrow-derived stem cell research. Stem Cells 24:1409–1410. doi: 10.1634/stemcells.2005-0654 CrossRefGoogle Scholar
  27. Sudo K, Kanno M, Miharada K et al (2007) Mesenchymal progenitors able to differentiate into osteogenic, chondrogenic, and/or adipogenic cells in vitro are present in most primary fibroblast-like cell populations. Stem Cells 25(7):1610–1617. doi: 10.1634/stemcells.2006-0504 CrossRefGoogle Scholar
  28. Toma JG, Akhavan M, Fernandes KJ et al (2001) Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 3:778–784. doi: 10.1038/ncb0901-778 CrossRefGoogle Scholar
  29. Toma JG, McKenzie IA, Bagli SD et al (2005) Isolation and characterization of multipotent skin-derived precursors from human skin. Stem Cells 23:727–737. doi: 10.1634/stemcells.2004-0134 CrossRefGoogle Scholar
  30. Tsatmali M, Ancans J, Yukitake J et al (2000) Skin POMC peptides: their actions at the human MC-1 receptor and roles in the tanning response. Pigment Cell Res 13(Suppl 8):125–129. doi: 10.1034/j.1600-0749.13.s8.22.x CrossRefGoogle Scholar
  31. Tsatmali M, Ancans J, Thody AJ (2002) Melanocyte function and its control by melanocortin peptides. J Histochem Cytochem 50:125–133Google Scholar
  32. Watt FM, Lo Celso C, Silva-Vargas V (2006) Epidermal stem cells: an update. Curr Opin Genet Dev 16(5):518–524. doi: 10.1016/j.gde.2006.08.006 CrossRefGoogle Scholar
  33. Williams RL, Hilton DJ, Pease S et al (1988) Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336(6200):684–687. doi: 10.1038/336684a0 CrossRefGoogle Scholar
  34. Wong CE, Paratore C, Dours-Zimmermann MT et al (2006) Neural crest-derived cells with stem cell features can be traced back to multiple lineages in the adult skin. J Cell Biol 175(6):1005–1015. doi: 10.1083/jcb.200606062 CrossRefGoogle Scholar
  35. Young HE, Steele TA, Bray RA et al (2001) Human reserve pluripotent mesenchymal stem cells are present in the connective tissues of skeletal muscle and dermis derived from fetal, adult, and geriatric donors. Anat Rec 264:51–62. doi: 10.1002/ar.1128 CrossRefGoogle Scholar
  36. Zaragosi LE, Ailhaud G, Dani C (2006) Autocrine fibroblast growth factor 2 signaling is critical for self-renewal of human multipotent adipose-derived stem cells. Stem Cells 24:2412–2419. doi: 10.1634/stemcells.2006-0006 CrossRefGoogle Scholar
  37. Zhu C, Joyce NC (2004) Proliferative response of corneal endothelial cells from young and older donors. Invest Ophthalmol Vis Sci 45:1743–1751. doi: 10.1167/iovs.03-0814 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Faculty of MedicineUniversity of LatviaRigaLatvia
  2. 2.Faculty of BiologyUniversity of LatviaRigaLatvia

Personalised recommendations