, Volume 58, Issue 1, pp 11–16 | Cite as

Is stem cell chromosomes stability affected by cryopreservation conditions?

  • Giuseppe R. DiaferiaEmail author
  • Sara S. Dessì
  • Pasquale DeBlasio
  • Ida Biunno
Special Issue Stem Cells


The introduction of the recombinant DNA techniques in the 1970s paved the way to “Gene Therapy” a novel branch of modern medicine. Although gene therapy is still at an experimental stage, it has great potentials since allows to transfer, into organs and tissues, genetic information. However, several technical problems still need to be overcome before this approach takes over conventional pharmacological treatments (Hacein-Bey-Abina et al. 2002; Mullen et al. 1996).

Today stem cells, either embryonic or adult, are acquiring a great deal of attention as they promise, and rightly so, to be new vehicles for gene therapy. Unfortunately, the in vivo genetic instability of stem cells, and even more pronounced for embryonic derived stem cells, limits their widespread use. The prototypic example of adult stem cells, the hematopoietic stem cells have already been used in gene therapy (Aiuti et al. 2002) after being isolated from bone marrow or after their mobilization into...


Stem Cell Embryonic Stem Cell Trehalose Adult Stem Cell Sister Chromatid Exchange 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank NEUROscreen (FP6, EU) for the valuable support in this research.


  1. Aiuti A, Slavin S, Aker M, Ficara F, Deola S, Mortellaro A et al (2002) Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 296:2410–2413. doi: 10.1126/science.1070104 CrossRefGoogle Scholar
  2. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737. doi: 10.1038/nm0797-730 CrossRefGoogle Scholar
  3. Bouquet M, Selva J, Auroux M (1993) Cryopreservation of mouse oocytes: mutagenic effects in the embryo? Biol Reprod 49:764–769. doi: 10.1095/biolreprod49.4.764 CrossRefGoogle Scholar
  4. Buchanan SS, Menze MA, Hand SC, Pyatt DW, Carpenter JF (2005) Cryopreservation of Human Hematopoietic Stem and Progenitor cells loaded with Trehalose:Transient permaeabilization via the adenosine triphosphate dependent P2Z receptor channel. Cell Preserv Technol 3:212–222. doi: 10.1089/cpt.2005.3.212 CrossRefGoogle Scholar
  5. Buchanan SS, Gross SA, Acker JP, Toner M, Carpenter JF, Pyatt DW (2004) Cryopreservation of stem cells using threhalose: evaluation of the method using a human hematopoietic cell line. Stem Cells Dev 13:295–305. doi: 10.1089/154732804323099226 CrossRefGoogle Scholar
  6. Carrano AV, Thompson LH, Lindl PA, Minkler JL (1978) Sister chromatid exchange as an indicator of mutagenesis. Nature 271:551–553. doi: 10.1038/271551a0 CrossRefGoogle Scholar
  7. Clapisson G, Salinas C, Malacher P, Michallet M, Philip I, Philip T (2004) Cryopreservation with hydroxyethylstarch (HES) + dimethylsulfoxide (DMSO) gives better results than DMSO alone. Bull Cancer 91:E97–E102Google Scholar
  8. Doxey AC, Yaish MW, Griffith M, McConkey BJ (2006) Ordered surface carbons distinguish antifreeze proteins and their ice-binding regions. Nat Biotechnol 24:852–855. doi: 10.1038/nbt1224 CrossRefGoogle Scholar
  9. Draper JS, Smith K, Gokhale P, Moore HD, Maltby E, Johnson J et al (2004) Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat Biotechnol 22:53–54. doi: 10.1038/nbt922 CrossRefGoogle Scholar
  10. Edwards MK, Harris JF, McBurney MW (1983) Induced muscle differentiation in an embryonal carcinoma cell line. Mol Cell Biol 3:2280–2286Google Scholar
  11. Gregory CA, Prockop DJ, Spees JL (2005) Non-hematopoietic bone marrow stem cells: molecular control of expansion and differentiation. Exp Cell Res 306:330–335. doi: 10.1016/j.yexcr.2005.03.018 CrossRefGoogle Scholar
  12. Hacein-Bey-Abina S, Le Deist F, Carlier F, Bouneaud C, Hue C, De Villartay JP et al (2002) Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N Engl J Med 346:1185–1193. doi: 10.1056/NEJMoa012616 CrossRefGoogle Scholar
  13. Heng BC, Kuleshova LL, Bested SM, Liu H, Cao T (2005) The cryopreservation of human embryonic stem cells. Biotechnol Appl Biochem 41:97–104. doi: 10.1042/BA20040161 CrossRefGoogle Scholar
  14. Hiyama E, Hiyama K (2007) Telomere and telomerase in stem cells. Br J Cancer 96:1020–1024. doi: 10.1038/sj.bjc.6603671 CrossRefGoogle Scholar
  15. Inzunza J, Sahlen S, Holmberg K, Stromberg AM, Teerijoki H, Blennow E et al (2004) Comparative genomic hybridization and karyotyping of human embryonic stem cells reveals the occurrence of an isodicentric X chromosome after long-term cultivation. Mol Hum Reprod 10:461–466. doi: 10.1093/molehr/gah051 CrossRefGoogle Scholar
  16. Iwatani M, Ikegami K, Kremenska Y, Hattori N, Tanaka S, Yagi S et al (2006) Dimethyl sulfoxide has an impact on epigenetic profile in mouse embryoid body. Stem Cells 24:2549–2556. doi: 10.1634/stemcells.2005-0427 CrossRefGoogle Scholar
  17. Ji L, de Pablo JJ, Palecek SP (2004) Cryopreservation of adherent human embryonic stem cells. Biotechnol Bioeng 88:299–312. doi: 10.1002/bit.20243 CrossRefGoogle Scholar
  18. Kim SJ, Park JH, Lee JE, Kim JM, Lee JB, Moon SY et al (2004) Effects of type IV collagen and laminin on the cryopreservation of human embryonic stem cells. Stem Cells 22:950–961. doi: 10.1634/stemcells.22-6-950 CrossRefGoogle Scholar
  19. Kola I, Kirby C, Shaw J, Davey A, Trounson A (1988) Vitrification of mouse oocytes results in aneuploid zygotes and malformed fetuses. Teratology 38:467–474. doi: 10.1002/tera.1420380510 CrossRefGoogle Scholar
  20. Leibovitz BE, Siegel BV (1980) Aspects of free radical reactions in biological systems: aging. J Gerontol 35:45–56Google Scholar
  21. Li E (2002) Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet 3:662–673. doi: 10.1038/nrg887 CrossRefGoogle Scholar
  22. Lingner J, Cech TR (1998) Telomerase and chromosome end maintenance. Curr Opin Genet Dev 8:226–232. doi: 10.1016/S0959-437X(98)80145-7 CrossRefGoogle Scholar
  23. Mantel C, Guo Y, Lee MR, Kim MK, Han MK, Shibayama H et al (2007) Checkpoint-apoptosis uncoupling in human and mouse embryonic stem cells: a source of karyotpic instability. Blood 109:4518–4527. doi: 10.1182/blood-2006-10-054247 CrossRefGoogle Scholar
  24. Mullen CA, Snitzer K, Culver KW, Morgan RA, Anderson WF, Blaese RM (1996) Molecular analysis of T lymphocyte-directed gene therapy for adenosine deaminase deficiency: long-term expression in vivo of genes introduced with a retroviral vector. Hum Gene Ther 7:1123–1129. doi: 10.1089/hum.1996.7.9-1123 CrossRefGoogle Scholar
  25. Pathak S, Multani AS (2006) Aneuploidy, stem cells and cancer. EXS 96:49–64Google Scholar
  26. Pera MF, Reubinoff B, Trounson A (2000) Human embryonic stem cells. J Cell Sci 113(Pt 1):5–10Google Scholar
  27. Preisler HD, Giladi M (1975) Differentiation of erythroleukemic cells in vitro: irreversible induction by dimethyl sulfoxide (DMSO). J Cell Physiol 85:537–546. doi: 10.1002/jcp.1040850305 CrossRefGoogle Scholar
  28. Rao B, David G (1984) Improved recovery of post-thaw motility and vitality of human spermatozoa cryopreserved in the presence of dithiothreitol. Cryobiology 21:536–541. doi: 10.1016/0011-2240(84)90052-X CrossRefGoogle Scholar
  29. Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 18:399–404. doi: 10.1038/74447 CrossRefGoogle Scholar
  30. Reubinoff BE, Pera MF, Vajta G, Trounson AO (2001) Effective cryopreservation of human embryonic stem cells by the open pulled straw vitrification method. Hum Reprod 16:2187–2194. doi: 10.1093/humrep/16.10.2187 CrossRefGoogle Scholar
  31. Reya T, Duncan AW, Ailles L, Domen J, Scherer DC, Willert K et al (2003) A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423:409–414. doi: 10.1038/nature01593 CrossRefGoogle Scholar
  32. Rodrigues JP, Paraguassu-Braga FH, Carvalho L, Abdelhay E, Bouzas LF, Porto LC (2008) Evaluation of trehalose and sucrose as cryoprotectants for hematopoietic stem cells of umbilical cord blood. Cryobiology 56:144–151. doi: 10.1016/j.cryobiol.2008.01.003 CrossRefGoogle Scholar
  33. Sauer-Heilborn A, Kadidlo D, McCullough J (2004) Patient care during infusion of hematopoietic progenitor cells. Transfusion 44:907–916. doi: 10.1111/j.1537-2995.2004.03230.x CrossRefGoogle Scholar
  34. Stocum DL (2005) Stem cells in CNS and cardiac regeneration. Adv Biochem Eng Biotechnol 93:135–159Google Scholar
  35. Tedder RS, Zuckerman MA, Goldstone AH, Hawkins AE, Fielding A, Briggs EM et al (1995) Hepatitis B transmission from contaminated cryopreservation tank. Lancet 346:137–140. doi: 10.1016/S0140-6736(95)91207-X CrossRefGoogle Scholar
  36. Vincent C, Pickering SJ, Johnson MH, Quick SJ (1990) Dimethylsulphoxide affects the organisation of microfilaments in the mouse oocyte. Mol Reprod Dev 26:227–235. doi: 10.1002/mrd.1080260306 CrossRefGoogle Scholar
  37. Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL, Reya T et al (2003) Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423:448–452. doi: 10.1038/nature01611 CrossRefGoogle Scholar
  38. Xu C, Inokuma MS, Denham J, Golds K, Kundu P, Gold JD et al (2001) Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol 19:971–974. doi: 10.1038/nbt1001-971 CrossRefGoogle Scholar
  39. Zwaka TP, Thomson JA (2005) Differentiation of human embryonic stem cells occurs through symmetric cell division. Stem Cells 23:146–149. doi: 10.1634/stemcells.2004-0248 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Giuseppe R. Diaferia
    • 1
    Email author
  • Sara S. Dessì
    • 1
  • Pasquale DeBlasio
    • 1
  • Ida Biunno
    • 2
  1. 1.BioRep SrLMilanoItaly
  2. 2.ITB-CNRSegrate-MilanoItaly

Personalised recommendations