, Volume 58, Issue 1, pp 33–42 | Cite as

Placenta-derived stem cells: new hope for cell therapy?

  • Marco Evangelista
  • Maddalena Soncini
  • Ornella Parolini
Special Issue Stem Cells


An urgent current need in regenerative medicine is that of identifying a plentiful, safe and ethically acceptable stem cell source for the development of therapeutic strategies to restore functionality in damaged or diseased organs and tissues. In this context, human term placenta represents a prime candidate, as it is available in nearly unlimited supply, is ethically problem-free and easily procured. Placental cells display differentiation capacity toward all three germ layers, while also displaying immunomodulatory effects, therefore supporting the possibility that they could be applied in an allogeneic transplantation setting. Although promising data have been reported to date, further study is required to fully characterize the differentiation potential of placenta-derived cells and to identify their possible clinical applications. Here, we provide a snapshot of current knowledge regarding the potential of cells from the amniotic membrane of human term placenta to address current shortcomings in the field of regenerative medicine.


Placenta-derived cells Amnion Fetal membranes Cell therapy 


  1. Akle CA, Adinolfi M, Welsh KI, Leibowitz S, McColl I (1981) Immunogenicity of human amniotic epithelial cells after transplantation into volunteers. Lancet 2:1003–1005. doi:10.1016/S0140-6736(81)91212-5 CrossRefGoogle Scholar
  2. Alviano F, Fossati V, Marchionni C, Arpinati M, Bonsi L, Franchina M, Lanzoni G, Cantoni S, Cavallini C, Bianchi F, Tazzari PL, Pasquinelli G, Foroni L, Ventura C, Grossi A, Bagnara GP (2007) Term Amniotic membrane is a high throughput source for multipotent Mesenchymal Stem Cells with the ability to differentiate into endothelial cells in vitro. BMC Dev Biol 7:11. doi:10.1186/1471-213X-7-11 CrossRefGoogle Scholar
  3. Avila M, Espana M, Moreno C, Pena C (2001) Reconstruction of ocular surface with heterologous limbal epithelium and amniotic membrane in a rabbit model. Cornea 20:414–420. doi:10.1097/00003226-200105000-00016 CrossRefGoogle Scholar
  4. Bailo M, Soncini M, Vertua E, Signoroni PB, Sanzone S, Lombardi G, Arienti D, Calamani F, Zatti D, Paul P, Albertini A, Zorzi F, Cavagnini A, Candotti F, Wengler GS, Parolini O (2004) Engraftment potential of human amnion and chorion cells derived from term placenta. Transplantation 78:1439–1448. doi:10.1097/01.TP.0000144606.84234.49 CrossRefGoogle Scholar
  5. Benirschke K, Kaufmann P (2000) Pathology of the human placenta. Springer-VerlagGoogle Scholar
  6. Bilic G, Ochsenbein-Kolble N, Hall H, Huch R, Zimmermann R (2004) In vitro lesion repair by human amnion epithelial and mesenchymal cells. Am J Obstet Gynecol 190:87–92. doi:10.1016/j.ajog.2003.07.011 CrossRefGoogle Scholar
  7. Colocho G, Graham WP 3rd, Greene AE, Matheson DW, Lynch D (1974) Human amniotic membrane as a physiologic wound dressing. Arch Surg 109:370–373Google Scholar
  8. Cunningham FG, Hankins GDF, Leveno KJ, Gilstrap LC, Gant NF, Mac Donald PC, Clark SL (1997) Williams obstetrics. McGraw-Hill MedicalGoogle Scholar
  9. Davila JC, Cezar GG, Thiede M, Strom S, Miki T, Trosko J (2004) Use and application of stem cells in toxicology. Toxicol Sci 79:214–223. doi:10.1093/toxsci/kfh100 CrossRefGoogle Scholar
  10. D’Ippolito G, Schiller PC, Ricordi C, Roos BA, Howard GA (1999) Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow. J Bone Miner Res 14:1115–1122. doi:10.1359/jbmr.1999.14.7.1115 CrossRefGoogle Scholar
  11. Eichna DM, Brown KS, Breen A, Dean RB (2008) Mucormycosis: a rare but serious infection. Clin J Oncol Nurs 12:108–112. doi:10.1188/08.CJON.108-112 CrossRefGoogle Scholar
  12. Elwan MA, Sakuragawa N (1997) Evidence for synthesis and release of catecholamines by human amniotic epithelial cells. Neuroreport 8:3435–3438. doi:10.1097/00001756-199711100-00004 CrossRefGoogle Scholar
  13. Faulk WP, Matthews R, Stevens PJ, Bennett JP, Burgos H, Hsi BL (1980) Human amnion as an adjunct in wound healing. Lancet 1:1156–1158. doi:10.1016/S0140-6736(80)91617-7 CrossRefGoogle Scholar
  14. Gomes JA, Romano A, Santos MS, Dua HS (2005) Amniotic membrane use in ophthalmology. Curr Opin Ophthalmol 16:233–240. doi:10.1097/ CrossRefGoogle Scholar
  15. Gruss JS, Jirsch DW (1978) Human amniotic membrane: a versatile wound dressing. Can Med Assoc J 118:1237–1246Google Scholar
  16. Ilancheran S, Michalska A, Peh G, Wallace EM, Pera M, Manuelpillai U (2007) Stem cells derived from human fetal membranes display multi-lineage differentiation potential. Biol Reprod 77:577–588. doi:10.1095/biolreprod.106.055244 CrossRefGoogle Scholar
  17. In ‘t Anker PS, Scherjon SA, Kleijburg-van der Keur C, de Groot-Swings GM, Claas FH, Fibbe WE, Kanhai HH (2004) Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 22:1338–1345CrossRefGoogle Scholar
  18. Kakishita K, Elwan MA, Nakao N, Itakura T, Sakuragawa N (2000) Human amniotic epithelial cells produce dopamine and survive after implantation into the striatum of a rat model of Parkinson’s disease: a potential source of donor for transplantation therapy. Exp Neurol 165:27–34. doi:10.1006/exnr.2000.7449 CrossRefGoogle Scholar
  19. Kakishita K, Nakao N, Sakuragawa N, Itakura T (2003) Implantation of human amniotic epithelial cells prevents the degeneration of nigral dopamine neurons in rats with 6-hydroxydopamine lesions. Brain Res 980:48–56. doi:10.1016/S0006-8993(03)02875-0 CrossRefGoogle Scholar
  20. Kong XY, Cai Z, Pan L, Zhang L, Shu J, Dong YL, Yang N, Li Q, Huang XJ, Zuo PP (2008) Transplantation of human amniotic cells exerts neuroprotection in MPTP-induced Parkinson disease mice. Brain Res 1205:108–115. doi:10.1016/j.brainres.2008.02.040 CrossRefGoogle Scholar
  21. Koyano S, Fukui A, Uchida S, Yamada K, Asashima M, Sakuragawa N (2002) Synthesis and release of activin and noggin by cultured human amniotic epithelial cells. Dev Growth Differ 44:103–112. doi:10.1046/j.1440-169x.2002.00626.x CrossRefGoogle Scholar
  22. Kubo M, Sonoda Y, Muramatsu R, Usui M (2001) Immunogenicity of human amniotic membrane in experimental xenotransplantation. Invest Ophthalmol Vis Sci 42:1539–1546Google Scholar
  23. Li H, Niederkorn JY, Neelam S, Mayhew E, Word RA, McCulley JP, Alizadeh H (2005) Immunosuppressive factors secreted by human amniotic epithelial cells. Invest Ophthalmol Vis Sci 46:900–907. doi:10.1167/iovs.04-0495 CrossRefGoogle Scholar
  24. Liu T, Wu J, Huang Q, Hou Y, Jiang Z, Zang S, Guo L (2008) Human amniotic epithelial cells ameliorate behavioral dysfunction and reduce infarct size in the rat middle cerebral artery occlusion model. Shock 29:603–611. doi:10.1097/SHK.0b013e318157e845 CrossRefGoogle Scholar
  25. Magatti M, De Munari S, Vertua E, Gibelli L, Wengler GS, Parolini O (2008) Human amnion mesenchyme harbors cells with allogeneic T-cell suppression and stimulation capabilities. Stem Cells 26:182–192. doi:10.1634/stemcells.2007-0491 CrossRefGoogle Scholar
  26. Mareschi K, Ferrero I, Rustichelli D, Aschero S, Gammaitoni L, Aglietta M, Madon E, Fagioli F (2006) Expansion of mesenchymal stem cells isolated from pediatric and adult donor bone marrow. J Cell Biochem 97:744–754. doi:10.1002/jcb.20681 CrossRefGoogle Scholar
  27. Miki T, Strom SC (2006) Amnion-derived pluripotent/multipotent stem cells. Stem Cell Rev 2:133–142CrossRefGoogle Scholar
  28. Miki T, Lehmann T, Cai H, Stolz DB, Strom SC (2005) Stem cell characteristics of amniotic epithelial cells. Stem Cells 23:1549–1559. doi:10.1634/stemcells.2004-0357 CrossRefGoogle Scholar
  29. Miki T, Mitamura K, Ross MA, Stolz DB, Strom SC (2007) Identification of stem cell marker-positive cells by immunofluorescence in term human amnion. J Reprod Immunol 75:91–96. doi:10.1016/j.jri.2007.03.017 CrossRefGoogle Scholar
  30. Moore KL, Persaud TVN (1998) The developing human: clinically oriented embryology. SandersGoogle Scholar
  31. Parolini O, Alviano F, Bagnara GP, Bilic G, Buhring HJ, Evangelista M, Hennerbichler S, Liu B, Magatti M, Mao N, Miki T, Marongiu F, Nakajima H, Nikaido T, Portmann-Lanz CB, Sankar V, Soncini M, Stadler G, Surbek D, Takahashi TA, Redl H, Sakuragawa N, Wolbank S, Zeisberger S, Zisch A, Strom SC (2008) Concise review: isolation and characterization of cells from human term placenta: outcome of the first international workshop on placenta derived stem cells. Stem Cells 26:300–311CrossRefGoogle Scholar
  32. Portmann-Lanz CB, Schoeberlein A, Huber A, Sager R, Malek A, Holzgreve W, Surbek DV (2006) Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration. Am J Obstet Gynecol 194:664–673. doi:10.1016/j.ajog.2006.01.101 CrossRefGoogle Scholar
  33. Sakuragawa N, Yoshikawa H, Sasaki M (1992) Amniotic tissue transplantation: clinical and biochemical evaluations for some lysosomal storage diseases. Brain Dev 14:7–11Google Scholar
  34. Sakuragawa N, Thangavel R, Mizuguchi M, Hirasawa M, Kamo I (1996) Expression of markers for both neuronal and glial cells in human amniotic epithelial cells. Neurosci Lett 209:9–12. doi:10.1016/0304-3940(96)12599-4 CrossRefGoogle Scholar
  35. Sakuragawa N, Misawa H, Ohsugi K, Kakishita K, Ishii T, Thangavel R, Tohyama J, Elwan M, Yokoyama Y, Okuda O, Arai H, Ogino I, Sato K (1997) Evidence for active acetylcholine metabolism in human amniotic epithelial cells: applicable to intracerebral allografting for neurologic disease. Neurosci Lett 232:53–56. doi:10.1016/S0304-3940(97)00570-3 CrossRefGoogle Scholar
  36. Sakuragawa N, Enosawa S, Ishii T, Thangavel R, Tashiro T, Okuyama T, Suzuki S (2000) Human amniotic epithelial cells are promising transgene carriers for allogeneic cell transplantation into liver. J Hum Genet 45:171–176. doi:10.1007/s100380050205 CrossRefGoogle Scholar
  37. Sakuragawa N, Kakinuma K, Kikuchi A, Okano H, Uchida S, Kamo I, Kobayashi M, Yokoyama Y (2004) Human amnion mesenchyme cells express phenotypes of neuroglial progenitor cells. J Neurosci Res 78:208–214. doi:10.1002/jnr.20257 CrossRefGoogle Scholar
  38. Sankar V, Muthusamy R (2003) Role of human amniotic epithelial cell transplantation in spinal cord injury repair research. Neuroscience 118:11–17. doi:10.1016/S0306-4522(02)00929-6 CrossRefGoogle Scholar
  39. Scaggiante B, Pineschi A, Sustersich M, Andolina M, Agosti E, Romeo D (1987) Successful therapy of Niemann-Pick disease by implantation of human amniotic membrane. Transplantation 44:59–61. doi:10.1097/00007890-198707000-00014 CrossRefGoogle Scholar
  40. Schroeder A, Theiss C, Steuhl KP, Meller K, Meller D (2007) Effects of the human amniotic membrane on axonal outgrowth of dorsal root ganglia neurons in culture. Curr Eye Res 32:731–738. doi:10.1080/02713680701530605 CrossRefGoogle Scholar
  41. Soncini M, Vertua E, Gibelli L, Zorzi F, Denegri M, Albertini A, Wengler GS, Parolini O (2007) Isolation and characterization of mesenchymal cells from human fetal membranes. J Tissue Eng Regen Med 1:296–305. doi:10.1002/term.40 CrossRefGoogle Scholar
  42. Subrahmanyam M (1995) Amniotic membrane as a cover for microskin grafts. Br J Plast Surg 48:477–478. doi:10.1016/0007-1226(95)90123-X CrossRefGoogle Scholar
  43. Takashima S, Ise H, Zhao P, Akaike T, Nikaido T (2004) Human amniotic epithelial cells possess hepatocyte-like characteristics and functions. Cell Struct Funct 29:73–84. doi:10.1247/csf.29.73 CrossRefGoogle Scholar
  44. Tamagawa T, Ishiwata I, Saito S (2004) Establishment and characterization of a pluripotent stem cell line derived from human amniotic membranes and initiation of germ layers in vitro. Hum Cell 17:125–130Google Scholar
  45. Tcheng M, Oliver L, Courtois Y, Jeanny JC (1994) Effects of exogenous FGFs on growth, differentiation, and survival of chick neural retina cells. Exp Cell Res 212:30–35. doi:10.1006/excr.1994.1114 CrossRefGoogle Scholar
  46. Terada S, Matsuura K, Enosawa S, Miki M, Hoshika A, Suzuki S, Sakuragawa N (2000) Inducing proliferation of human amniotic epithelial (HAE) cells for cell therapy. Cell Transpl 9:701–704Google Scholar
  47. Toda A, Okabe M, Yoshida T, Nikaido T (2007) The potential of amniotic membrane/amnion-derived cells for regeneration of various tissues. J Pharmacol Sci 105:215–228. doi:10.1254/jphs.CR0070034 CrossRefGoogle Scholar
  48. Trelford JD, Trelford-Sauder M (1979) The amnion in surgery, past and present. Am J Obstet Gynecol 134:833–845Google Scholar
  49. Tylki-Szymanska A, Maciejko D, Kidawa M, Jablonska-Budaj U, Czartoryska B (1985) Amniotic tissue transplantation as a trial of treatment in some lysosomal storage diseases. J Inherit Metab Dis 8:101–104. doi:10.1007/BF01819289 CrossRefGoogle Scholar
  50. Uchida S, Inanaga Y, Kobayashi M, Hurukawa S, Araie M, Sakuragawa N (2000) Neurotrophic function of conditioned medium from human amniotic epithelial cells. J Neurosci Res 62:585–590. doi:10.1002/1097-4547(20001115)62:4<585::AID-JNR13>3.0.CO;2-UCrossRefGoogle Scholar
  51. Ventura C, Cantoni S, Bianchi F, Lionetti V, Cavallini C, Scarlata I, Foroni L, Maioli M, Bonsi L, Alviano F, Fossati V, Bagnara GP, Pasquinelli G, Recchia FA, Perbellini A (2007) Hyaluronan mixed esters of butyric and retinoic acid drive cardiac and endothelial fate in term placenta human mesenchymal stem cells and enhance cardiac repair in infarcted rat hearts. J Biol Chem 282:14243–14252. doi:10.1074/jbc.M609350200 CrossRefGoogle Scholar
  52. Ward DJ, Bennett JP (1984) The long-term results of the use of human amnion in the treatment of leg ulcers. Br J Plast Surg 37:191–193. doi:10.1016/0007-1226(84)90009-2 CrossRefGoogle Scholar
  53. Ward DJ, Bennett JP, Burgos H, Fabre J (1989) The healing of chronic venous leg ulcers with prepared human amnion. Br J Plast Surg 42:463–467. doi:10.1016/0007-1226(89)90015-5 CrossRefGoogle Scholar
  54. Wei JP, Zhang TS, Kawa S, Aizawa T, Ota M, Akaike T, Kato K, Konishi I, Nikaido T (2003) Human amnion-isolated cells normalize blood glucose in streptozotocin-induced diabetic mice. Cell Transpl 12:545–552Google Scholar
  55. Wolbank S, Peterbauer A, Fahrner M, Hennerbichler S, van Griensven M, Stadler G, Redl H, Gabriel C (2007) Dose-dependent immunomodulatory effect of human stem cells from amniotic membrane: a comparison with human mesenchymal stem cells from adipose tissue. Tissue Eng 13:1173–1183. doi:10.1089/ten.2006.0313 CrossRefGoogle Scholar
  56. Yeager AM, Singer HS, Buck JR, Matalon R, Brennan S, O’Toole SO, Moser HW (1985) A therapeutic trial of amniotic epithelial cell implantation in patients with lysosomal storage diseases. Am J Med Genet 22:347–355. doi:10.1002/ajmg.1320220219 CrossRefGoogle Scholar
  57. Yuge I, Takumi Y, Koyabu K, Hashimoto S, Takashima S, Fukuyama T, Nikaido T, Usami S (2004) Transplanted human amniotic epithelial cells express connexin 26 and Na-K-adenosine triphosphatase in the inner ear. Transplantation 77:1452–1454. doi:10.1097/00007890-200405150-00023 CrossRefGoogle Scholar
  58. Zhao P, Ise H, Hongo M, Ota M, Konishi I, Nikaido T (2005) Human amniotic mesenchymal cells have some characteristics of cardiomyocytes. Transplantation 79:528–535. doi:10.1097/01.TP.0000149503.92433.39 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Marco Evangelista
    • 1
  • Maddalena Soncini
    • 1
  • Ornella Parolini
    • 1
  1. 1.Centro di Ricerca E. MenniFondazione Poliambulanza – Istituto OspedalieroBresciaItaly

Personalised recommendations