, Volume 51, Issue 2, pp 45–50 | Cite as

Identity tests: determination of cell line cross-contamination

  • C. M. CabreraEmail author
  • F. Cobo
  • A. Nieto
  • J. L. Cortés
  • R. M. Montes
  • P. Catalina
  • A. Concha


Cell line cross-contamination is a phenomenon that arises as a result of the continuous cell line culture. It has been estimated that around 20% of the cell lines are misidentified, therefore it is necessary to carry out quality control tests for the detection of this issue. Since cell line cross-contamination discovery, different methods have been applied, such as isoenzyme analysis for inter-species cross-contamination; HLA typing, and DNA fingerprinting using short tandem repeat and a variable number of tandem repeat for intra-species cross-contamination. The cell banks in this sense represent the organizations responsible for guaranteeing the authenticity of cell lines for future research and clinical uses.


Cell lines Cross-contamination Fingerprinting Isoenzyme analysis Short tandem repeat Variable number tandem repeat 



Amplified fragment length polymorphism


Master cell bank


Short tandem repeat


Sequence based typing


Sequence specific oligonucleotide


Sequence specific oligonucleotide probe


Variable number tandem repeat


Working cell bank


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank Ms. Angela Barnie for checking the use of English in the manuscript.


  1. AATB American Association of Tissue Banks (2002) Standards for tissue banking, 10th edn. American Association of Tissue Banks, McLean, VAGoogle Scholar
  2. ATCC Connection Newsletter (2000) Verify cell line identity with DNA profiling 21:1Google Scholar
  3. Borge OJ, Evers K (2003) Aspects on properties, use and ethical considerations of embryonic stem cells—a short review. Cytotechnology 41:59–68CrossRefGoogle Scholar
  4. Buehring GC, Eby EA, Eby MJ (2004) Cell line cross-contamination: how aware are mammalian cell culturists of the problem and how to monitor it? In Vitro Cell Dev Biol Anim 40:211–215CrossRefGoogle Scholar
  5. Cao K, Chopek M, Fernández-Vina MA (1999) High and intermediate resolution DNA typing systems for class I HLA-A, B, C genes by hybridization with SSOP. Rev Immunogenet 1:177–208Google Scholar
  6. Cobo F, Stacey GN, Hunt C, Cabrera C, Nieto A, Montes R, Cortes JL, Catalina P, Barnie A, Concha A (2005) Microbiological control in stem cell banks: approaches to standardisation. Appl Microbiol Biotechnol 68:456–466CrossRefGoogle Scholar
  7. Defendi V, Billingham RE, Silvers WK, Moorhead P (1960) Immunological and karyological criteria for identification of cell lines. J Natl Cancer Inst 25:359–385Google Scholar
  8. Freshney RI (1994) Culture of animal cells: a manual of basic techniques. Wiley-Liss, Inc., New YorkGoogle Scholar
  9. Gartler SM (1968) Apparent HeLa cell contamination of human heteroploid cell lines. Nature 217:750–751CrossRefGoogle Scholar
  10. Gerlach JA (2001) Human lymphocyte antigen molecular typing: how to identify the 1250+ alleles out there. Arch Pathol Lab Med 126:281–284Google Scholar
  11. Gey GO, Coffman WD, Kubicek MT (1952) Tissue culture studies of the proliferative capacity of cervical carcinoma and normal epithelium. Cancer Res 12:264–265Google Scholar
  12. Healy L, Hunt C, Young L, Stacey GN (2005) The UK Stem Cell Bank: its role as a public research centre providing access to well-characterised seed stocks of human stem cell lines. Adv Drug Deliv Rev 57:1981–1988CrossRefGoogle Scholar
  13. Hyslop LA, Armstrong L, Stojkovic M, Lako M (2005) Human embryonic stem cells: biology and clinical implications. Expert Rev Mol Med 7:1–21CrossRefGoogle Scholar
  14. International Conference on Harmonisation of Technical requirements for registration of Pharmaceuticals for human use (1997) ICH harmonised tripartite guideline. Viral safety evaluation of biotechnology products derived from lines of human or animal origin, MarchGoogle Scholar
  15. Jeffreys AJ, Wilson V, Thein SL (1985a) Hypervariable “minisatellite” regions in human DNA. Nature 314:67–73CrossRefGoogle Scholar
  16. Jeffreys AJ, Wilson V, Thein SL (1985b) Individual specific DNA fingerprints of human DNA. Nature 316:76–79CrossRefGoogle Scholar
  17. Koreth J, O’Leary JJ, O’D McGee J (1996) Microsatellites and PCR genomic analysis. J Pathol 178:239–248CrossRefGoogle Scholar
  18. MacLeod RA, Dirks WG, Matsuo Y, Kaufmann M, Milch H, Drexler HG (1999) Widespread intraspecies cross-contamination of human tumor cell lines arising at source. Int J Cancer 83:555–563CrossRefGoogle Scholar
  19. Masters JR, Thomson JA, Daly-Burns B et al (2001) Short tandem repeat profiling provide an international reference standard for human cell lines. Proc Natl Acad Sci USA 98:8012–8017CrossRefGoogle Scholar
  20. Masters JR (2002) HeLa cells 50 years on: the good, the bad and the ugly. Nat Rev Cancer 2:315–319CrossRefGoogle Scholar
  21. MCA (MHRA) (2002) Rules and guidance for pharmaceutical manufactures and distributors. The Stationery Office, LondonGoogle Scholar
  22. Nelson-Rees WA, Flandermeyer RA, Hawthorne PK (1975) Distinctive banded marker chromosomes of human tumor cell lines. Int J Cancer 16:74–82Google Scholar
  23. Nelson-Rees WA, Flandermeyer RA (1976) HeLa cultures defined. Science 191:96–98CrossRefGoogle Scholar
  24. Nelson-Rees WA, Daniels DW, Flandermeyer RR (1981) Cross-contamination of cells in culture. Science 212:446–452CrossRefGoogle Scholar
  25. Nims RW, Shoemaker AP, Bauernschub MA, Rec LJ, Harbell JW (1998) Sensitivity of isoenzyme analysis for the detection of interspecies cell line cross-contamination. In Vitro Cell Dev Biol Anim 34:35–39Google Scholar
  26. Nomenclature for factors of the HLA system: update October 2000 (2001) Tissue Antigens 57:93–94Google Scholar
  27. Page-Bright B (1982) Proving paternity-human leukocyte antigen test. J Forensic Sci 27:135–153Google Scholar
  28. Rajalingam R, Ge P, Reed EF (2004) A sequencing-based typing for HLA-DQA1 alleles. Hum Immunol 65:373–379Google Scholar
  29. Schaeffer WI (1990) Terminology associated with cell, tissue, and organ culture, molecular biology, and molecular genetics. Tissue Culture Association Terminology Committee. In Vitro Cell Dev Biol 26:97–101Google Scholar
  30. Stacey GN, Hoelzl H, Stephenson JR, Doyle A (1997) Authentication of animal cell cultures by direct visualization of repetitive DNA, aldolase gene PCR and isoenzyme analysis. Biologicals 25:75–85CrossRefGoogle Scholar
  31. Stacey GN (2000) Cell contamination leads to inaccurate data: we must take action now. Nature 403:356CrossRefGoogle Scholar
  32. Stevanovic S (2002). Structural basis of immunogenicity. Transpl Immunol 10:133–136CrossRefGoogle Scholar
  33. Tamaki K, Jeffreys AJ (2005) Human tandem repeat sequences in forensic DNA typing. Leg Med (Tokyo) 7:244–250Google Scholar
  34. United Kingdom Coordinating Committee on Cancer Research (2000) Br J Cancer 82:1495–1509Google Scholar
  35. Welsh K, Bunce M (1999) Molecular typing for the MHC with PCR-SSP. Rev Immunogenet 1:157–176Google Scholar
  36. Wong Z, Wilson V, Patel I, Povey S, Jeffreys AJ (1987) Characterization of a panel of highly variable minisatellites cloned from human DNA. Ann Hum Genet 51:269–288Google Scholar
  37. World Health Organization (1987) Acceptability of cell substrates for production of biologicals. Technical Report Series. WHO, GenevaGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • C. M. Cabrera
    • 1
    Email author
  • F. Cobo
    • 1
  • A. Nieto
    • 1
  • J. L. Cortés
    • 1
  • R. M. Montes
    • 1
  • P. Catalina
    • 1
  • A. Concha
    • 1
  1. 1.Stem Cell Bank of Andalucia (Spanish Central Node)Hospital Universitario Virgen de las NievesAvenida de las Fuerzas Armadas No. 2GranadaSpain

Personalised recommendations