Cytotechnology

, 50:93 | Cite as

Recommended Method for Chromosome Exploitation: RMCE-based Cassette-exchange Systems in Animal Cell Biotechnology

  • André Oumard
  • Junhua Qiao
  • Thomas Jostock
  • Jiandong Li
  • Juergen Bode
Article

Abstract

The availability of site-specific recombinases has revolutionized the rational construction of cell lines with predictable properties. Early efforts were directed to providing pre-characterized genomic loci with a single recombinase target site that served as an address for the integration of vectors carrying a compatible tag. Efficient procedures of this type had to await recombinases like ΦC31, which recombine attP and attB target sites in a one-way reaction — at least in the cellular environment of the higher eukaryotic cell. Still these procedures lead to the co-introduction of prokaryotic vector sequences that are known to cause epigenetic silencing. This review illuminates the actual status of the more advanced recombinase-mediated cassette exchange (RMCE) techniques that have been developed for the major members of site-specific recombinases (SR), Flp, Cre and ΦC31. In RMCE the genomic address consists of a set of heterospecific recombinase target (RT-) sites permitting the exchange of the intervening sequence for the gene of interest (GOI), as part of a similar cassette. This process locks the GOI in place and it is ‘clean’ in the sense that it does not co-introduce prokaryotic vector parts nor does it leave behind a selection marker.

Key words

Cassette exchange Flexing Floxing Flrting Froxing RMCE Site-specific recombinase Tissue engineering 

Abbreviation

FRT

Flp-recombinase target site

HR

homologous recombination

RMCE

recombinase-mediated cassette exchange

RT

recombinase target

SR

site-specific recombination

References

  1. Andreas S., Schwenk F., Küter-Luks B., Faust N. and Kühn R. (2002). Enhanced efficiency through nuclear localization signal fusion on phage C31-integrase: activity comparison with Cre and FLPe recombinase in mammalian cells. Nucleic Acids Res. 30: 2299–2306CrossRefGoogle Scholar
  2. Baer A., Schübeler D. and Bode J. (2000). Transcriptional properties of genomic transgene integration sites marked by electroporation or retroviral infection. Biochemistry 39: 7041–7049CrossRefGoogle Scholar
  3. Baer A. and Bode J. (2001). Coping with kinetic and thermodynamic barriers: RMCEan efficient strategy for the targeted integration of transgenes. Curr. Opin. Biotech. 12: 473–480CrossRefGoogle Scholar
  4. Baer A. 2002. Funktioneller Vergleich von S/MARs (‘scaffold/matrix attachment regions’ und Insulatoren im chromosomalen Kontext. Dissertation, University of Braunschweig; http://www.biblio.tu-bs.de/ediss/data/20021106a/20021106a.pdf.Google Scholar
  5. Bautista D. and Shulman M.J. (1993). A hit-and-run system for introducing mutations into the Ig H chain locus of hybridoma cells by homologous recombination. J. Immunol. 151: 1950–1958Google Scholar
  6. Belteki G., Gertsenstein M., Ow D.W. and Nagy A. (2003). Site-specific cassette exchange and germline transmission with mouse ES cells expressing phiC31 integrase. Nat. Biotechnol. 21: 321–324CrossRefGoogle Scholar
  7. Bode J., Bartsch J., Boulikas T., Iber M., Mielke C., Schübeler D., Seibler J. and Benham C. 1998. Transcription-promoting genomic sites in mammalia: their elucidation and architectural principles. Gene Ther. Mol. Biol. 1: 551–880.http://www.gtmb.org/volume1/29_Bode.htm.Google Scholar
  8. Bode J., Schlake T., Iber M., Schübeler D., Seibler J., Snezhkov E. and Nikolaev L. (2000). The transgeneticist’s toolbox — novel methods for the targeted modification of eukaryotic genomes. Biol. Chem. 381: 801–813CrossRefGoogle Scholar
  9. Bode J., Goetze S., Ernst E., Huesemann Y., Baer A., Seibler J. and Mielke C. (2003). Architecture and utilization of highly-expressed genomic sites in New Comprehensive Biochemistry Vol 38. In: Makrides, S. and Bernardi, G. (eds) (volume ed.) Gene Transfer and Expression in Mammalian Cells, pp. Elsevier, Amsterdam Google Scholar
  10. Bode J., Winkelmann S., Götze S., Spiker S., Tsutsui K., Bi C. and Benham C. 2005. Correlations between scaffold/matrix attachment region (S/MAR) binding activity and DNA duplex destabilization energy. J. Mol. Biol. in press.Google Scholar
  11. Bouhassira E., Westerman K. and Leboulch P. (1997). Transcriptional behavior of LCR enhancer elements integrated at the same chromosomal locus by recombinase-mediated cassette exchange. Blood 90: 3332–3344Google Scholar
  12. Branda C.S. and Dymecki S.M. (2004). Talking about a revolution: the impact of site-specific recombinases on genetic analyses in mice. Develop. Cell 6: 7–28CrossRefGoogle Scholar
  13. Buchholz F., Ringrose L., Angrand P., Rossi F. and Stewart A. (1996). Different thermostabilities of FLP and Cre recombinases: implications for applied site specific recombination. Nucl. Acids Res. 24: 4256–4262CrossRefGoogle Scholar
  14. Buchholz F., Angrand P.-O. and Stewart A.F. (1998). Improved properties of Flp recombinase evolved by cycling mutagenesis. Nat. Biotechnol. 16: 657–662CrossRefGoogle Scholar
  15. Cesari F., Rennekampff V., Vintersten K., Vuong L.G., Seibler J., Bode J., Wiebel F.F. and Nordheim A. (2004). Elk-1 knock-out mice engineered by Flp recombinase-mediated cassette exchange. Genesis 38: 87–92CrossRefGoogle Scholar
  16. Cobellis G., Nicolaus G., Iovino M., Romito A., Marra E., Barbarisi M., Sardiello M., Di Giorgio F.P., Iovino N., Zollo M., Ballabio A. and Cortese R. (2005). Tagging genes with cassette-exchange sites. Nucl. Acids Res. 33(4): e44, doi:10.1093/nar/gni045CrossRefGoogle Scholar
  17. Coroadinha A.S., Schucht R., Gama-Norton L., Wirth D., Hauser H. and Carrondo M.J.T. 2005. The use of recombinase cassette exchange in retroviral vector producer cell lines: predictability and efficiency in transgene replacement. J. Biotechnol., Submitted.Google Scholar
  18. Fukushige S. and Sauer B. (1992). Genomic targeting with a positive-selection lox integration vector allows highly reproducible gene expression in mammalian cells. Proc. Natl. Acad. Sci. 89: 7905–7909CrossRefGoogle Scholar
  19. Garrick D., Fiering S., Martin D.I.K. and Whitelaw E. (1998). Repeat-induced gene silencing in mammals. Nat. Genet. 18: 56–59CrossRefGoogle Scholar
  20. Goetze S., Huesemann Y., Baer A. and Bode J. (2003). Functional characterization of transgene integration patterns by Halo-FISH: electroporation versus retroviral infection. Biochemistry 42: 7035–7043CrossRefGoogle Scholar
  21. Goetze S., Baer A., Winkelmann S., Nehlsen K., Seibler J., Maass K. and Bode J. (2005). Mol. Cell. Biol. 25: 2260–2272 CrossRefGoogle Scholar
  22. Grabenhorst E., Schlenke P., Pohl S., Nimtz M. and Conradt H.S. (1999). Genetic engineering of recombinant glycoproteins and the glycosylation pathway in mammalian host cells. Glycoconjugate J. 16: 81–97CrossRefGoogle Scholar
  23. Groth A.C., Olivares E.C., Thyagarajan B. and Calos M.P. (2000). A phage integrase directs efficient site-specific integration in human cells. Proc. Natl. Acad. Sci. USA 97: 5995–6000CrossRefGoogle Scholar
  24. Kolot M., Silberstein N. and Yagil E. (1999). Site specific recombination in mammalian cells expressing the Int recombinase of bacteriophage HK022. Mol. Biol. Rep. 26: 207–213CrossRefGoogle Scholar
  25. Kouzine K., Liu L., Sanford S., Chung H.J. and Levens D. (2004). The dynamic response of upstream DNA to transcription-generated torsional stress. Nature Struct. Mol. Biol. 11: 1092–1100CrossRefGoogle Scholar
  26. Lauth M., Spreafico F., Dethleffsen K. and Meyer M. (2002). Stable and efficient cassette exchange under non-selectable conditions by combined use of two site-specific recombinases. Nucl. Acids Res. 30: e115CrossRefGoogle Scholar
  27. Mlynarova L., Libantova J., Vrba L. and Nap J.P. (2002). The promiscuity of heterospecific lox sites increases dramatically in the presence of palindromic DNA. Gene 296: 129–137CrossRefGoogle Scholar
  28. Nakano M., Odaka K., Takahashi Y., Ishimura M., Saito I. and Kanegae Y. (2005). Production of viral vectors using recombinase-mediated cassette exchange. Nucl. Acids Res. 33: e76CrossRefGoogle Scholar
  29. Ng P. and Baker M.D. (1998). High efficiency site-specific modification of the chromosomal immunoglobulin locus by gene targeting. J. Immunol. Meth. 214: 81–96CrossRefGoogle Scholar
  30. O’Gorman S., Fox D.T. and Wahl G.M. (1991). Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science 251: 1351–1355CrossRefGoogle Scholar
  31. Peitz M., Pfannkuche K., Rajewsky K. and Edenhofer F. (2002). Ability of the hydrophobic FGF and basic TAT peptides to promote cellular uptake of recombinant Cre recombinase: a tool for efficient genetic engineering of mammalian genomes. Proc. Natl. Acad. Sci. USA 99: 4489–4494CrossRefGoogle Scholar
  32. Roebroek A.J.M., Reekmans S., Lauwers A., Feyaerts N., Smeijers L. and Hartmann D. 2006. Mutant Lrp1 knock-in mice generated by RMCE reveal differential importance of the NPXY motifs in the intracellular domain of LRP1 for normal fetal development. Mol. Cell Biol. 26: 605–616Google Scholar
  33. Riu E., Grimm D., Huang Z., Mark A. and Kay M.A. (2005). Increased maintenance and persistence of transgenes by excision of expression cassettes from plasmid sequences in vivo Hum. Gene. Ther. 16: 558–570CrossRefGoogle Scholar
  34. Schlake T. and Bode J. (1994). Use of mutated FLP recognition target (FRT) sites for the exchange of expression cassettes at defined chromosomal loci. Biochemistry 33: 12746–12751CrossRefGoogle Scholar
  35. Schmidt E.E., Taylor D.S., Prigge J.R., Arnett S. and Capecchi M.R. (2000). Illegitimate Cre-dependent chromosome rearrangements in transgenic mouse spermatids. Proc. Natl. Acad. Sci. USA 97: 13702–13707CrossRefGoogle Scholar
  36. Schnütgen F., Doerflinger N., Calléja C., Wendling O., Chambon P. and Ghyselinck N.B. (2003). A directional strategy for monitoring Cre-mediated recombination at the cellular level in the mouse. Nat. Biotechnol. 21: 562–565CrossRefGoogle Scholar
  37. Schucht R., Coroadinha A.S., Zanta-Boussif M.A., Carrondo M., Hauser H. and Wirth D. 2005. A new generation of retroviral producer cells: predictable and stable virus production by Flp mediated site-specific integration of retroviral vectors. Mol. Thera., Submitted.Google Scholar
  38. Schübeler D. and Bode J. (1998). Retargeting of retroviral integration sites for the predictable expression of transgenes and the analysis of cis-acting sequences. Biochemistry 37: 11907–11914CrossRefGoogle Scholar
  39. Seibler J., Schübeler D., Fiering S., Groudine M. and Bode J. (1998). DNA cassette exchange mediated by FLP recombinase: an efficient strategy for the repeated modification of tagged loci by marker-free constructs. Biochemistry 37: 6229–6234CrossRefGoogle Scholar
  40. Seibler J., Küter-Luks B., Kern H., Streu S., Plum L., Mauer J., Kühn R., Brüning J.C. and Schwenk F. (2005). Single copy shRNA configuration for ubiquitous gene knockdown in mice. Nucl. Acids Res. 33: e67 CrossRefGoogle Scholar
  41. Stark W.M., Boocock M.R. and Sherratt D.J. (1992). Catalysis by site-specific recombinases. Trends Genet. 8: 432–439CrossRefGoogle Scholar
  42. Taniguchi M., Sanbo M., Watanabe S., Naruse I., Mishina M. and Yagi T. (1998). Efficient production of Cre-mediated site-directed recombinants through the utilization of the puromycin resistance genepac: a transient gene-integration marker for ES cells. Nucl. Acids Res. 26: 679–680CrossRefGoogle Scholar
  43. Thorpe H.M. and Smith M.C.M. (1998). In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family. Proc. Natl. Acad. Sci. USA 95: 5505–5510CrossRefGoogle Scholar
  44. Thyagarajan B., Olivares E.C., Hollis R.P., Ginsburg D.S. and Calos M.P. (2001). Site-specific genomic integration in mammalian cells mediated by phage phiC31 integrase. Mol. Cell Biol. 21: 3926–3934 CrossRefGoogle Scholar
  45. Umlauf S.W. and Cox M.M. (1988). The functional significance of DNA sequence structure in a site-specific genetic recombination reaction. EMBO J. 7: 1845–1852Google Scholar
  46. Unsinger J., Lindenmaier W., May T., Hauser H. and Wirth D. (2004). Stable and strictly controlled expression of LTR-flanked autoregulated expression cassettes upon adenoviral transfer. Biochem. Biophys. Res. Commun. 319: 879–887CrossRefGoogle Scholar
  47. Weidle U.H., Buckel P. and Wienberg J. (1988). Amplified expression constructs for human tissue-type plasminogen activator in Chinese hamster ovary cells: instability in the absence of selective pressure. Gene 66: 193–203CrossRefGoogle Scholar
  48. Winkler K., Wermelinger T., Paul C., Koch S., Brecht S., Zietze S., Nuck R., Thiel G., Marx U. and Sandig V. 2005. Targeting the human IgH loci for high level heterologous gene expression. In: Gòdia F. and Fussenegger M.(eds) ESACT Proceedings, Vol. 2. Animal Cell Technology Meets Genomics. SpringerNetherlands, pp.403–409.ISBN: 1-4020-2791-5Google Scholar
  49. Wirth M., Bode J., Zettelmeissl G. and Hauser H. (1988). Isolation of overproducing recombinant mammalian cell lines by a fast and simple selection procedure. Gene 73: 419–426CrossRefGoogle Scholar
  50. Wirth D. and Hauser H. (2004). Flp-mediated integration of expression cassettes into FRT-tagged chromosomal loci in mammalian cells. Methods Mol. Biol. 267: 467–476Google Scholar
  51. Wong E.T., Kolman J.L., Li Y.C., Mesner L.D., Hillen W., Berens C. and Wahl G.M. (2005). Reproducible doxycycline-inducible transgene expression at specific loci generated by Cre-recombinase mediated cassette exchange. Nucl. Acids Res. 33(17): e147, doi:10.1093/nar/gni145CrossRefGoogle Scholar
  52. Wurm F.M. and Jordan M. (2003). Gene transfer and gene amplification in mammalian cells in “New Comprehensive Biochemistry 38” In: Bernardi, G. (eds) A Gene Transfer and Expression in Mammalian Cells, Chapter 7. S. Makrides, Volume Ed, pp 307–335. Elsevier, AmsterdamGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • André Oumard
    • 1
  • Junhua Qiao
    • 1
  • Thomas Jostock
    • 2
  • Jiandong Li
    • 2
  • Juergen Bode
    • 1
  1. 1.German Research Center for Biotechnology (GBF), RDIF/Epigenetic RegulationBraunschweigGermany
  2. 2.Technical University of Braunschweig, Institute of Biochemistry and BiotechnologyBraunschweigGermany

Personalised recommendations