Cytotechnology

, 50:35 | Cite as

On-line Measurements and Control of Viable Cell Density in Cell Culture Manufacturing Processes using Radio-frequency Impedance

Article

Abstract

In this work, radio-frequency (RF) impedance is reviewed as a method for monitoring and controlling cell culture manufacturing processes. It is clear from the many publications cited that RF Impedance is regarded as an accurate and reliable method for measuring the live cell bio-volume both on-line and off-line and the technology is also sutable for animal cells in suspension, attached to micro-carriers or immobilized in fixed beds. In cGMP production, RF Impedance is being used in three main areas. Firstly, it is being used as a control instrument for maintaining consistent perfusion culture allowing the bioreactor to operate under optimum conditions for maximum production of recombinant proteins. In the second application it has not replaced traditional off-line live cell counting techniques but it is being used as an additional monitoring tool to check product conformance. Finally, RF Impedance is being used to monitor the concentration of live cells immobilized on micro-carriers or packed beds in cGMP processes where traditional off-line live cell counting methods are inaccurate or impossible to perform.

Key words

Radio-frequency impedance Capacitance Cell culture CHO cGMP On-line biomass monitoring Perfusion culture 

References

  1. Asami K., Yonezawa T., Wakamatsu H. and Koyanagi N. (1996). Dielectric spectroscopy of biological cells. Biochem. Bioener. 40: 141–145CrossRefGoogle Scholar
  2. Barer M.R., Kaprelyants A.S., Weichart D.H., Harwood C.R. and Kell D.B. (1998). Microbial stress and culturability: conceptual and operational domains. Microbiology UK 144: 2009–2010CrossRefGoogle Scholar
  3. Belving H., Ericksson L.E.G., Davey C.L. and Kell D.B. (1994). Dielectric properties of human blood and erythrocytes at radio frequencies (0.2–10 MHz); dependence on cell volume fraction and medium composition. Eur. Biophys. J. 23: 207–215CrossRefGoogle Scholar
  4. Carvell J.P. 2003. Monitoring live cell concentration in real time. Bioprocess Int.: 2–7.Google Scholar
  5. Cerkel I., Garcia A., Degouys V., Dubois D., Fabry L. and Miller A.O.A. (1993). Dielectric-spectroscopy of mammalian cells: evaluation of the biomass of Hela-Cell and CHO-cells in suspension by low frequency dielectric spectroscopy. Cytotechnology 13: 185–193CrossRefGoogle Scholar
  6. Clegg J.S. (1984). Properties and metabolism of the aqueous cytoplasm and its boundaries. Am. J. Physiol. 246: R133–R151Google Scholar
  7. Davey C.L. and Kell D.B. 1995. The low-frequency dielectric properties of biological cells. In: Bioelectrochemistry: Principles and PracticeVol. 2. Bioelectrochem’of Cells and Tissues. pp. 159–207.Google Scholar
  8. Davey C.L., Davey H.M., Kell D.B. and Todd R.W. (1993a). Introduction to the dielectric estimation of cellular biomass in real timewith special emphasis on measurements at high volume fractions. Anal. Chim. Acta 279: 155–161CrossRefGoogle Scholar
  9. Davey C.L., Markx G.H. and Kell D.B. (1993b). On the dielectric method of measuring cellular viability. Pure Appl. Chem. 65: 1921–1926CrossRefGoogle Scholar
  10. Davey C.L., Guan Y. and Kemp R.B. (1997a). Real time monitoring of the biomass content of animal cell cultures using dielectric spectroscopy. Animal Cell Technol.: Basic Appl. Aspects 8: 61–65Google Scholar
  11. Davey C.L., Guan Y., Kemp R.B. and Kell D.B. (1997b). Real-time monitoring of the biomass content of animal cell cultures using dielectric spectroscopy. In: Funatsu, K., Shirai, Y., and Matsushita, T. (eds) Animal Cell Technology: Basic and Applied Aspects, Vol. 8, pp 61–65. Kluwer, DordrechtGoogle Scholar
  12. Degouys V., Cerkel I., Garcia A., Harfield J., Dubois D., Fabry L. and Miller A.O.A. (1993). Dielectric spectroscopy of mammalian cells: 2, simultaneous in situ evaluation by aperture impedance pulse spectroscopy and low-frequency dielectric spectroscopy of the biomass of HTC cells on Cytodex 3. Cytotechnology 13: 195–202CrossRefGoogle Scholar
  13. Dowd J.E., Jubb A., Kwok E.K. and Piret J.M. (2003). Optimization and control of perfusion cultures using a viable cell probe and cell specific perfusion rates. Cytotechnology 42: 35–45CrossRefGoogle Scholar
  14. Dowd J.E. and Carvell J.P. (2005). Improved control of cGMP fermentations and cell culture. Genet. Engineer. News 25(11): 64–68Google Scholar
  15. Ducommun P., Kadori A., Von Stockar U. and Marison I. (2002a). On-line determination of animal cell concentration in two industrial high density culture processes by dielectric spectroscopy. Biotechnol. Bioeng. 77: 316–323CrossRefGoogle Scholar
  16. Ducommun P., Ruffieux P.A., Kadouri A., Von Stockar U. and Marison (2002b). Monitoring temperature effects on cell metabolism in a packed bed process. Biotechnol. Bioeng. 77: 838–842CrossRefGoogle Scholar
  17. Elias C.B., Zeiser A., Bedard C. and Kamen A.A. (2000). Enhanced growth of Sf-9 cells to a maximum density of 5.2×107 cells per ml and production of B-Galactosidase at high cell density by fed batch culture. Biotechnol. Bioeng. 68: 381–388CrossRefGoogle Scholar
  18. Elias C.B., Zeiser A. and Kamen A.A. (2003). Advances in high cell density culture technology using the Sf-9 insect cell baculovirus expression system — the fed batch approach. Bioprocess J. 2(1): 22–29Google Scholar
  19. Ferreira A.P., Vieira L.M., Cordoso J.P. and Menzes J.C. (2005). Evaluation of a new capacitance probe for biomass monitoring in industrial pilot-scale fermentations. J. Biotechnol. 116: 403–409CrossRefGoogle Scholar
  20. Foster K.R. and Schwan H.P. (1986). Dielectric properties of tissues. In: Polk, C. and Postow, E. (eds) CRC Handbook of Biological Effects of Electromagnetuic Fields, pp. CRC Press, Boca Raton, FLGoogle Scholar
  21. Foster K.R. and Schwan H.P. (1989). Dielectric properties of tissues and biological materials: a critical review. Critical Reviews in Biomedical Engineering 17: 25–104Google Scholar
  22. Guan Y. and Kemp R. (1997). The viable cell monitor: a dielectric spectroscope for growth and metabolic studies of animal cells on macroporous beads. In: Merten, O.-W., Perrin, P. and Griffiths, B. (eds) New Developments and New Applications in Animal Cell Technology, pp 321–328. Kluwer Academic Publishers, Dordrecht/NLGoogle Scholar
  23. Guan Y., Evans P.M. and Kemp R.B. (1998). An on-line monitor and potential control variable of specific metabolic rate in animal cell culture that combines microcalorimetry with dielectric spectroscopy. Biotechnol. Bioeng. 58: 463–477CrossRefGoogle Scholar
  24. Harris C.M., Todd R.W., Bungard S.H., Lovitt R.W., Morris J.G. and Kell D.B. (1987). The dielectric permietivity of microbial suspensions at radio frequencies: a novel method for the estimation of microbial biomass. Enzyme Microb. Technol. 9: 181–186CrossRefGoogle Scholar
  25. Kell D.B. and Todd R.W. (1998). Dielectric estimation of microbial biomass using the Aber Instruments Biomass Monitor. TIBTECH 16: 149–150Google Scholar
  26. Kell D.B., Markx G.H., Davey C.L. and Todd R.W. (1990). Real time monitoring of cellular biomass: methods and applications. Trends Anal. Chem. 9: 190–194CrossRefGoogle Scholar
  27. Kell D.B., Kaprelyants A.S., Weichart D.H., Harwood C.L. and Baxter M.R. (1998). Viability and activity in readily culturable bacteria: a review and discussion of the practical issues. Antonie van Leeuwenhoek 73: 169–187CrossRefGoogle Scholar
  28. Konstantinov K.B., Pambayun R., Matanguihan R., Yoshida T., Perusich C.M. and Hu W.S. (1992). On-line monitoring of hybridoma cell growth using a laser turbidity sensor. Biotechnol. Bioeng. 40: 1337–1342CrossRefGoogle Scholar
  29. Konstantinov K., Chuppa S., Saja E., Tsal Y., Golini F. and Yoons (1994). Real time biomass concentration monitoring in animal cell cultures. TIBTECH 12: 324–333Google Scholar
  30. Merten O.-W., Palfi G.E., Stäheli J. and Steiner J. (1987). Invasive infrared sensor for the determination of the cell number in a continuous fermentation of hybridomas. Dev. Biol. Standard 66: 357–360Google Scholar
  31. Noll T. and Biselli M. (1998). Dielectric spectroscopy in the cultivation of suspended and immobilised hybridoma cells. J. Biotechnol. 63: 187–198CrossRefGoogle Scholar
  32. Pethig R. (1979). Dielectric and Electronic Properties of Biological Materials. Wiley, ChichesterGoogle Scholar
  33. Pethig R. and Kell D.B. (1987). The passive electrical properties of biological systems: their significance in physiology, biophysics and biotechnology. Phys. Med. Biol. 32: 933–970CrossRefGoogle Scholar
  34. Schmid G. and Zacher D. (2004). Evaluation of a novel capacitance probe for on-line monitoring of viable cell densities in batch and fed-bach animal cell culture processes. In: Godia, F. and Fussenegger, M. (eds) Animal Cell Technology Meets Genomics, pp 621–624. Springer, Dordrecht/NLGoogle Scholar
  35. Siano S.A. (1997). Biomass measurement by inductive permeattivity. Biotechnol. Bioeng. 55: 289–304CrossRefGoogle Scholar
  36. Stoicheva N.G., Davey C.L., Markx G.H. and Kell D.B. (1989). Dielectric spectroscopy: a rapid method for the determination of solvent biocompatibility during biotransformations. Biocatalysis 2: 5–22CrossRefGoogle Scholar
  37. Takashima S., Asami K. and Takahashi Y. (1988). Frequency domain studies of impedance characteristics of biological cells using micropippette technique. 1. Erythrocyte. Biophys. J. 54: 995–1000CrossRefGoogle Scholar
  38. Vits H. and Hu W.S. (1992). Fluctuations in continuous mammalian cell bioreactors with retention. Biotechnol. Progr. 8: 397–403CrossRefGoogle Scholar
  39. Wu P., Ozturk S., Blackie J.D., Thrift J.C., Figueroa C. and Naveh D. (1995). Evaluation and applications of optical density probes in mammalian cell bioreactors. Biotechnol. Bioeng. 45: 495–502CrossRefGoogle Scholar
  40. Zeiser A., Bedard C., Voyer R., Jardin B., Tom R., Karmen A.A. and Karmen T. (1999). On-line monitoring of the progress of infection in Sf-9 insect cell cultures using relative permittivity measurements. Biotechnol. Bioeng. 63: 122–126CrossRefGoogle Scholar
  41. Zeiser A., Voyer R., Jardin B. and Kamen A. (2000). On-line monitoring physiological parameters of insect cell cultures during growth and infection process. Biotechnol. Progr. 16: 803–808CrossRefGoogle Scholar
  42. Zho W. and Hu W.S. (1994). On-line characterisation of a hybridoma cell culture process. Biotechnol. Bioeng. 44: 170–177CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Aber Instruments Ltd.AberyswythUK
  2. 2.JEHD ConsultingVancouverCanada

Personalised recommendations