Advertisement

Cytotechnology

, Volume 47, Issue 1–3, pp 51–57 | Cite as

Preparation of Cationic Immunovesicles Containing Cationic Peptide Lipid for Specific Drug Delivery to Target Cells

  • Takuya Sugahara
  • Shinichi Kawashima
  • Akiko Oda
  • Yoshio Hisaeda
  • Keiichi KatoEmail author
Article

Abstract

The cationic vesicle composed of Span80 and cationic peptide lipid (CPL) was prepared. The cytotoxicity of the Span80-CPL cationic vesicle was very low compared with Span80 vesicle. Antibody was able to be immobilized on vesicle surface by mediation of protein A. The antigen targeting ability of the antibody-immobilized vesicle (immunovesicle) derived from antibody was evaluated. Our results suggested that the Span80-CPL immunovesicles specifically associate with target cells by the antibody mediation, and the substance capsulated in immunovesicle was transferred into the target cells. This means that the Span80-CPL immunovesicle is expected to achieve a high local concentration of an encapsulated drug at the target.

Keywords

Lipid Peptide Drug Delivery Target Cell Local Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

CPL

cationic peptide lipid

FBS

fetal bovine serum

FITC

fluorescein isothiocyanate

IADE

isothiocyanic acid dodecyl ester

PBS

phosphate buffered saline

PI

propidium iodide

Span80

sorbitan monooleate

Tween80

polyoxyethylene (20) sorbitan monooleate

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bendas, G. 2001Immunoliposomes: a promising approach to targeting cancer therapyBioDrugs15215224PubMedGoogle Scholar
  2. Kato, K., Sugahara, T., Kawashima, S., Hayashi, Y., Yoshihiro, A., Sasaki, T.,  et al. 1999Study of the specific binding between lipid vesicles and human–human hybridoma toward either DDS or gene transfectionBernard, A. eds. Animal Cell Technology: Products from Cells, Cells as ProductsKluwer Academic PublishersThe Netherlands433435Google Scholar
  3. Kato, K., Ikeda, T., Shinozaki, M. 1993Lipid-membrane characteristics of large lipid-vesicles prepared by two-step emulsification technique and enzymatic NAD+-recycling in the vesicleJ. Chem. Eng. Japan26212216CrossRefGoogle Scholar
  4. Kessner, S., Krause, A., Rothe, U., Bendas, G. 2001Investigation of the cellular uptake of E-Selectin-treated immunoliposomes by activated human endothelial cellsBiochim. Biophys. Acta1541177190Google Scholar
  5. Maruyama, K., Takahashi, N., Tagawa, T., Nagaike, K., Iwatsuru, M. 1997Immunoliposomes bearing polyethyleneglycol-coupled Fab’ fragment show prolonged circulation time and high extravasation into targeted solid tumors in vivoFEBS Lett.413177180CrossRefPubMedGoogle Scholar
  6. Murakami, H., Masui, H., Sato, G.H., Sueoka, N., Chow, T.P., Kono-Sueoka, T. 1982Growth of hybridoma cells in serum-free mediumProc. Natl. Acad. Sci. USA7911581162PubMedGoogle Scholar
  7. Murakami, H., Hashizume, S., Ohashi, H., Shinohara, K., Yasumoto, K., Nomoto, K., Omura, H. 1985Human–human hybridomas secreting antibodies specific to human lung carcinomaIn Vitro Cell. Dev. Biol.21593596PubMedGoogle Scholar
  8. Murakami, Y., Naklano, A., Ikeda, H. 1982Preparation of stable single-compartment vesicles with cationic and zwitterionic amphiphiles involving amino acid residuesJ. Org. Chem.4721372144CrossRefGoogle Scholar
  9. Murakami, Y., Nakano, A., Yoshimatsu, A., Uchitomi, K., Matsuda, Y. 1984aCharacterization of molecular aggregates of peptide amphiphiles and kinetics of dynamic processes performed by single-walled vesicleJ. Am. Chem. Soc.10636133623CrossRefGoogle Scholar
  10. Murakami, Y., Hisaeda, Y., Ohno, T. 1984bHydrophobic vitamin B12. III. Incorporation of hydrophobic vitamin B12 derivatives into single-compartment vesicles and their alkylation in various molecular aggregatesBull. Chem. Soc. Jpn.5720912097Google Scholar
  11. Murakami, Y., Hisaeda, Y., Ohno, T. 1991Hydrophobic vitamin B12. Part 9. An artificial holoenzyme composed of hydrophobic vitamin B12 and synthetic bilayer membrane for carbon-skeleton rearrangementsJ. Chem. Soc. Perkin Trans.2405416Google Scholar
  12. Park, J.W., Hong, K., Kirpotin, D.B., Colbern, G., Shalaby, R., Baselga, J., Shao, Y., Nielsen, U.B., Marks, J.D., Moore, D., Papahadjopoulos, D., Benz, C.C. 2002Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted deliveryClin. Cancer Res.811721181PubMedGoogle Scholar
  13. Sugahara, T., Ohama, Y., Fukuda, A., Hayashi, M., Kawakubo, A., Kato, K. 2001The cytotoxic effect of Eucheuma serra agglutinin (ESA) on cancer cells and its application to molecular probe for drug delivery system using lipid vesiclesCytotechnology369399CrossRefGoogle Scholar
  14. Yoshioka, T., Sternberg, B., Florence, A.T. 1994Preparation and properties of vesicles (niosomes) of sorbitan monoesters (Span 20, 40, 60 and 80) and a sorbitan triester (Span85)Int. J. Pharm.10516CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Takuya Sugahara
    • 1
  • Shinichi Kawashima
    • 2
  • Akiko Oda
    • 1
  • Yoshio Hisaeda
    • 3
  • Keiichi Kato
    • 2
    Email author
  1. 1.Faculty of AgricultureEhime UniversityMatsuyamaJapan
  2. 2.Faculty of EngineeringEhime UniversityMatsuyamaJapan
  3. 3.Faculty of EngineeringKyushu UniversityFukuokaJapan

Personalised recommendations