Advertisement

Posterior Inference on Parameters in a Nonlinear DSGE Model via Gaussian-Based Filters

  • Sanha NohEmail author
Article
  • 27 Downloads

Abstract

This paper studies Gaussian-based filters within the pseudo-marginal Metropolis Hastings (PM-MH) algorithm for posterior inference on parameters in nonlinear DSGE models. We implement two Gaussian-based filters to evaluate the likelihood of a DSGE model solved to second and third order and embed them into the PM-MH: Central Difference Kalman filter (CDKF) and Gaussian mixture filter (GMF). The GMF is adaptively refined by splitting a mixture component into new mixture components based on Binomial Gaussian mixture. The overall results indicate that the estimation accuracy of the CDKF and the GMF is comparable to that of the particle filter (PF), except that the CDKF generates biased estimates in the extremely nonlinear case. The proposed GMF generates the most accurate estimates among them. We argue that the GMF with PM-MH can converge to the true and invariant distribution when the likelihood constructed by infinite Gaussian mixtures weakly converges to the true likelihood. In addition, we show that the Gaussian-based filters are more efficient than the PF in terms of effective computing time. Finally, we apply the method to real data.

Keywords

Nonlinear DSGE Central Difference Kalman filter Gaussian mixture filter Pseudo-marginal MH Pseudo posterior 

JEL Classification

C11 E1 

Notes

Supplementary material

References

  1. Achieser, N. I. (2013). Theory of approximation. North Chelmsford: Courier Corporation.Google Scholar
  2. Ali-Löytty, S. (2008). On the convergence of the Gaussian mixture filter. Tampere: Tampere University of Technology.Google Scholar
  3. Alspach, D. L., & Sorenson, H. W. (1971). Recursive Bayesian estimation using Gaussian sums. Automatica, 7(4), 465–479.  https://doi.org/10.1016/0005-1098(71)90097-5.CrossRefGoogle Scholar
  4. Alspach, D. L., & Sorenson, H. W. (1972). Nonlinear Bayesian estimation using Gaussian sum approximations. IEEE Transactions on Automatic Control, 17(4), 439–448.  https://doi.org/10.1109/TAC.1972.1100034.CrossRefGoogle Scholar
  5. Amisano, G., & Tristani, O. (2010). Euro area inflation persistence in an estimated nonlinear DSGE model. Journal of Economic Dynamics and Control, 34(10), 1837–1858.  https://doi.org/10.1016/j.jedc.2010.05.001.CrossRefGoogle Scholar
  6. An, S., & Schorfheide, F. (2007). Bayesian analysis of DSGE models. Econometric Reviews, 26(2–4), 113–172.  https://doi.org/10.1080/07474930701220071.CrossRefGoogle Scholar
  7. Andreasen, M. M. (2011). Non-linear DSGE models and the optimized central difference particle filter. Journal of Economic Dynamics and Control, 35(10), 1671–1695.  https://doi.org/10.1016/j.jedc.2011.04.007.CrossRefGoogle Scholar
  8. Andreasen, M. M. (2012). On the effects of rare disasters and uncertainty shocks for risk premia in non-linear DSGE models. Review of Economic Dynamics, 15(3), 295–316.  https://doi.org/10.1016/j.red.2011.08.001.CrossRefGoogle Scholar
  9. Andreasen, M. M. (2013). Non-linear DSGE models and the central difference Kalman filter. Journal of Applied Econometrics, 28(6), 929–955.  https://doi.org/10.1002/jae.2282.CrossRefGoogle Scholar
  10. Andrieu, C., Doucet, A., & Holenstein, R. (2010). Particle Markov chain Monte Carlo methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72(3), 269–342.  https://doi.org/10.1111/j.1467-9868.2009.00736.x.CrossRefGoogle Scholar
  11. Andrieu, C., & Roberts, G. O. (2009). The pseudo-marginal approach for efficient Monte Carlo computations. The Annals of Statistics, 37, 697–725.CrossRefGoogle Scholar
  12. Arasaratnam, I., & Haykin, S. (2009). Cubature Kalman filters. IEEE Transactions on Automatic Control, 54(6), 1254–1269.  https://doi.org/10.1109/TAC.2009.2019800.CrossRefGoogle Scholar
  13. Basu, S., & Bundick, B. (2017). Uncertainty shocks in a model of effective demand. Econometrica, 85(3), 937–958.  https://doi.org/10.3982/ECTA13960.CrossRefGoogle Scholar
  14. Binning, A. & Maih, J. (2015). Sigma point filters for dynamic nonlinear regime switching models. Working paper, Norges Bank. https://ideas.repec.org/p/bno/worpap/2015_10.html.
  15. Bollerslev, T., & Wooldridge, J. M. (1992). Quasi-maximum likelihood estimation and inference in dynamic models with time-varying covariances. Econometric Reviews, 11(2), 143–172.  https://doi.org/10.1080/07474939208800229.CrossRefGoogle Scholar
  16. Bonciani, D., & van Roye, B. (2016). Uncertainty shocks, banking frictions and economic activity. Journal of Economic Dynamics and Control, 73, 200–219.  https://doi.org/10.1016/j.jedc.2016.09.008.CrossRefGoogle Scholar
  17. Born, B., & Pfeifer, J. (2014). Policy risk and the business cycle. Journal of Monetary Economics, 68, 68–85.  https://doi.org/10.1016/j.jmoneco.2014.07.012.CrossRefGoogle Scholar
  18. Brock, W. A., & Mirman, L. J. (1972). Optimal economic growth and uncertainty: The discounted case. Journal of Economic Theory, 4(3), 479–513.  https://doi.org/10.1016/0022-0531(72)90135-4.CrossRefGoogle Scholar
  19. Canova, F., & Sala, L. (2009). Back to square one: Identification issues in DSGE models. Journal of Monetary Economics, 56(4), 431–449.  https://doi.org/10.1016/j.jmoneco.2009.03.014.CrossRefGoogle Scholar
  20. Chopin, N. (2004). Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference. The Annals of Statistics, 32, 2385–2411.  https://doi.org/10.1214/009053604000000698.CrossRefGoogle Scholar
  21. DeJong, D. N., Liesenfeld, R., Moura, G. V., Richard, J.-F., & Dharmarajan, H. (2012). Efficient likelihood evaluation of state-space representations. Review of Economic Studies, 80(2), 538–567.  https://doi.org/10.1093/restud/rds040.CrossRefGoogle Scholar
  22. Fernández-Villaverde, J. (2010). The econometrics of DSGE models. SERIEs, 1(1–2), 3–49.  https://doi.org/10.1007/s13209-009-0014-7.CrossRefGoogle Scholar
  23. Fernández-Villaverde, J., Guerrón-Quintana, P., Kuester, K., & Rubio-Ramírez, J. (2015). Fiscal volatility shocks and economic activity. American Economic Review, 105(11), 3352–3384.  https://doi.org/10.1257/aer.20121236.CrossRefGoogle Scholar
  24. Fernández-Villaverde, J., Guerrón-Quintana, P., Rubio-Ramírez, J. F., & Uribe, M. (2011). Risk matters: The real effects of volatility shocks. American Economic Review, 101(6), 2530–2561.  https://doi.org/10.1257/aer.101.6.2530.CrossRefGoogle Scholar
  25. Fernández-Villaverde, J., & Levintal, O. (2016). Solution methods for models with rare disasters. Technical report, National Bureau of Economic Research.Google Scholar
  26. Fernández-Villaverde, J., & Rubio-Ramírez, J. F. (2005). Estimating dynamic equilibrium economies: Linear versus nonlinear likelihood. Journal of Applied Econometrics, 20(7), 891–910.  https://doi.org/10.1002/jae.814.CrossRefGoogle Scholar
  27. Fernández-Villaverde, J., & Rubio-Ramírez, J. F. (2007). Estimating macroeconomic models: A likelihood approach. Review of Economic Studies, 74(4), 1059–1087.  https://doi.org/10.1111/j.1467-937X.2007.00437.x.CrossRefGoogle Scholar
  28. Fort, G., & Moulines, E. (2000). V-subgeometric ergodicity for a Hastings–Metropolis algorithm. Statistics and Probability Letters, 49(4), 401–410.  https://doi.org/10.1016/S0167-7152(00)00074-2.CrossRefGoogle Scholar
  29. Geweke, J. (1999). Using simulation methods for Bayesian econometric models: Inference, development, and communication. Econometric Reviews, 18(1), 1–73.  https://doi.org/10.1080/07474939908800428.CrossRefGoogle Scholar
  30. Geweke, J. (2005). Contemporary Bayesian econometrics and statistics (Vol. 537). New York: Wiley.CrossRefGoogle Scholar
  31. Hall, J., Pitt, M. K., & Kohn, R. (2014). Bayesian inference for nonlinear structural time series models. Journal of Econometrics, 179(2), 99–111.  https://doi.org/10.1016/j.jeconom.2013.10.016.CrossRefGoogle Scholar
  32. Hall, P., & Heyde, C. C. (2014). Martingale limit theory and its application. Cambridge: Academic Press.Google Scholar
  33. Hansen, G. D. (1985). Indivisible labor and the business cycle. Journal of Monetary Economics, 16(3), 309–327.  https://doi.org/10.1016/0304-3932(85)90039-X.CrossRefGoogle Scholar
  34. Herbst, E. (2015). Using the “Chandrasekhar Recursions” for likelihood evaluation of DSGE models. Computational Economics, 45(4), 693–705.  https://doi.org/10.1007/s10614-014-9430-2.CrossRefGoogle Scholar
  35. Herbst, E., & Schorfheide, F. (2017). Tempered particle filtering. Journal of Econometrics, 210, 26–44.CrossRefGoogle Scholar
  36. Jacquier, E., Polson, N. G., & Rossi, P. E. (2002). Bayesian analysis of stochastic volatility models. Journal of Business and Economic Statistics, 20(1), 69–87.  https://doi.org/10.1198/073500102753410408.CrossRefGoogle Scholar
  37. Jarner, S. F., & Hansen, E. (2000). Geometric ergodicity of Metropolis algorithms. Stochastic Processes and Their Applications, 85(2), 341–361.  https://doi.org/10.1016/S0304-4149(99)00082-4.CrossRefGoogle Scholar
  38. Jazwinski, A. H. (1970). Stochastic processes and filtering theory. Cambridge: Academic Press.Google Scholar
  39. Julier, S. J., & Uhlmann, J. K. (1997). A new extension of the Kalman filter to nonlinear systems. In International symposium of aerospace/defense sensing, simulation and controls (Vol. 3, No. 26, pp. 182–193).  https://doi.org/10.1117/12.280797.
  40. Justiniano, A., & Primiceri, G. E. (2008). The time-varying volatility of macroeconomic fluctuations. American Economic Review, 98(3), 604–41.  https://doi.org/10.1257/aer.98.3.604.CrossRefGoogle Scholar
  41. Justiniano, A., Primiceri, G. E., & Tambalotti, A. (2010). Investment shocks and business cycles. Journal of Monetary Economics, 57(2), 132–145.  https://doi.org/10.1016/j.jmoneco.2009.12.008.CrossRefGoogle Scholar
  42. Kim, J., & Kim, S. H. (2003). Spurious welfare reversals in international business cycle models. Journal of International Economics, 60(2), 471–500.  https://doi.org/10.1016/S0022-1996(02)00047-8.CrossRefGoogle Scholar
  43. Kim, J., Kim, S., Schaumburg, E., & Sims, C. A. (2008). Calculating and using second-order accurate solutions of discrete time dynamic equilibrium models. Journal of Economic Dynamics and Control, 32(11), 3397–3414.  https://doi.org/10.1016/j.jedc.2008.02.003.CrossRefGoogle Scholar
  44. Kim, S., Shephard, N., & Chib, S. (1998). Stochastic volatility: Likelihood inference and comparison with ARCH models. The Review of Economic Studies, 65(3), 361–393.  https://doi.org/10.1111/1467-937X.00050.CrossRefGoogle Scholar
  45. King, R. G., Plosser, C. I., & Rebelo, S. T. (1988a). Production, growth and business cycles: I. The basic neoclassical model. Journal of Monetary Economics, 21(2–3), 195–232.  https://doi.org/10.1016/0304-3932(88)90030-X.CrossRefGoogle Scholar
  46. King, R. G., Plosser, C. I., & Rebelo, S. T. (1988b). Production, growth and business cycles: II. New directions. Journal of Monetary Economics, 21(2–3), 309–341.  https://doi.org/10.1016/0304-3932(88)90034-7.CrossRefGoogle Scholar
  47. Leduc, S., & Liu, Z. (2016). Uncertainty shocks are aggregate demand shocks. Journal of Monetary Economics, 82, 20–35.  https://doi.org/10.1016/j.jmoneco.2016.07.002.CrossRefGoogle Scholar
  48. Lo, J. (1972). Finite-dimensional sensor orbits and optimal nonlinear filtering. IEEE Transactions on Information Theory, 18(5), 583–588.  https://doi.org/10.1109/TIT.1972.1054885.CrossRefGoogle Scholar
  49. McLachlan, G., & Peel, D. (2004). Finite mixture models. New York: Wiley.Google Scholar
  50. Mengersen, K. L., & Tweedie, R. L. (1996). Rates of convergence of the Hastings and Metropolis algorithms. The Annals of Statistics, 24(1), 101–121.  https://doi.org/10.1214/aos/1033066201.CrossRefGoogle Scholar
  51. Meyn, S. P., & Tweedie, R. L. (2012). Markov chains and stochastic stability. Berlin: Springer.Google Scholar
  52. Müller, U. K. (2013). Risk of Bayesian inference in misspecified models, and the sandwich covariance matrix. Econometrica, 81(5), 1805–1849.  https://doi.org/10.3982/ECTA9097.CrossRefGoogle Scholar
  53. Mumtaz, H., & Theodoridis, K. (2015). The international transmission of volatility shocks: An empirical analysis. Journal of the European Economic Association, 13(3), 512–533.  https://doi.org/10.1111/jeea.12120.CrossRefGoogle Scholar
  54. Mumtaz, H., & Zanetti, F. (2013). The impact of the volatility of monetary policy shocks. Journal of Money, Credit and Banking, 45(4), 535–558.  https://doi.org/10.1111/jmcb.12015.CrossRefGoogle Scholar
  55. Niemi, J., & West, M. (2010). Adaptive mixture modeling Metropolis methods for Bayesian analysis of nonlinear state-space models. Journal of Computational and Graphical Statistics, 19(2), 260–280.  https://doi.org/10.1198/jcgs.2010.08117.CrossRefGoogle Scholar
  56. NøRgaard, M., Poulsen, N. K., & Ravn, O. (2000). New developments in state estimation for nonlinear systems. Automatica, 36(11), 1627–1638.  https://doi.org/10.1016/S0005-1098(00)00089-3.CrossRefGoogle Scholar
  57. Omori, Y., Chib, S., Shephard, N., & Nakajima, J. (2007). Stochastic volatility with leverage: Fast and efficient likelihood inference. Journal of Econometrics, 140(2), 425–449.  https://doi.org/10.1016/j.jeconom.2006.07.008.CrossRefGoogle Scholar
  58. Pitt, M. K., dos Santos Silva, R., Giordani, P., & Kohn, R. (2012). On some properties of Markov chain Monte Carlo simulation methods based on the particle filter. Journal of Econometrics, 171(2), 134–151.  https://doi.org/10.1016/j.jeconom.2012.06.004.CrossRefGoogle Scholar
  59. Primiceri, G. E. (2005). Time varying structural vector autoregressions and monetary policy. The Review of Economic Studies, 72(3), 821–852.  https://doi.org/10.1111/j.1467-937X.2005.00353.x.CrossRefGoogle Scholar
  60. Raitoharju, M., & Ali-Loytty, S. (2012). An adaptive derivative free method for Bayesian posterior approximation. IEEE Signal Processing Letters, 19(2), 87–90.  https://doi.org/10.1109/LSP.2011.2179800.CrossRefGoogle Scholar
  61. Raitoharju, M., Ali-Löytty, S., & Piché, R. (2015). Binomial Gaussian mixture filter. EURASIP Journal on Advances in Signal Processing, 2015(1), 36.  https://doi.org/10.1186/s13634-015-0221-2.CrossRefGoogle Scholar
  62. Roberts, G. O., & Rosenthal, J. S. (1998). Markov-chain Monte Carlo: Some practical implications of theoretical results. Canadian Journal of Statistics, 26(1), 5–20.  https://doi.org/10.2307/3315667.CrossRefGoogle Scholar
  63. Roberts, G. O., & Smith, A. F. (1994). Simple conditions for the convergence of the Gibbs sampler and Metropolis–Hastings algorithms. Stochastic Processes and Their Applications, 49(2), 207–216.  https://doi.org/10.1016/0304-4149(94)90134-1.CrossRefGoogle Scholar
  64. Roberts, G. O., & Tweedie, R. L. (1996). Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms. Biometrika, 83(1), 95–110.  https://doi.org/10.1093/biomet/83.1.95.CrossRefGoogle Scholar
  65. Rogerson, R. (1988). Indivisible labor, lotteries and equilibrium. Journal of Monetary Economics, 21(1), 3–16.  https://doi.org/10.1016/0304-3932(88)90042-6.CrossRefGoogle Scholar
  66. Rudebusch, G. D., & Swanson, E. T. (2012). The bond premium in a DSGE model with long-run real and nominal. American Economic Journal: Macroeconomics, 4(1), 105–143.Google Scholar
  67. Runnalls, A. R. (2007). Kullback–Leibler approach to Gaussian mixture reduction. IEEE Transactions on Aerospace and Electronic Systems, 43(3), 989–999.  https://doi.org/10.1109/TAES.2007.4383588.CrossRefGoogle Scholar
  68. Schmitt-Grohé, S., & Uribe, M. (2004). Solving dynamic general equilibrium models using a second-order approximation to the policy function. Journal of Economic Dynamics and Control, 28(4), 755–775.  https://doi.org/10.1016/S0165-1889(03)00043-5.CrossRefGoogle Scholar
  69. Sims, E. R. (2011). Permanent and transitory technology shocks and the behavior of hours: A challenge for DSGE models. Working paper, University of Notre Dame.Google Scholar
  70. Strid, I., & Walentin, K. (2009). Block Kalman filtering for large-scale DSGE models. Computational Economics, 33(3), 277–304.  https://doi.org/10.1007/s10614-008-9160-4.CrossRefGoogle Scholar
  71. Tierney, L. (1994). Markov chains for exploring posterior distributions. The Annals of Statistics, 22(4), 1701–1728.CrossRefGoogle Scholar
  72. Van Der Merwe, R., & Wan, E. A. (2003). Gaussian mixture sigma-point particle filters for sequential probabilistic inference in dynamic state-space models. In 2003 IEEE international conference on acoustics, speech, and signal processing, 2003. Proceedings (ICASSP’03) (Vol. 6, VI–701).  https://doi.org/10.1109/ICASSP.2003.1201778.
  73. Vats, D., Flegal, J. M., & Jones, G. L. (2017). Multivariate output analysis for Markov chain Monte Carlo. Working paper. arXiv:1512.07713.
  74. Vihola, M. (2012). Robust adaptive Metropolis algorithm with coerced acceptance rate. Statistics and Computing, 22(5), 997–1008.  https://doi.org/10.1007/s11222-011-9269-5.CrossRefGoogle Scholar
  75. White, H. (1982). Maximum likelihood estimation of misspecified models. Econometrica, 50(1), 1–25.  https://doi.org/10.2307/1912526.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of EconomicsUniversity of MissouriColumbiaUSA

Personalised recommendations