Prediction of Unemployment Rates with Time Series and Machine Learning Techniques

  • Christos KatrisEmail author


In this paper, are explored and analyzed time series and machine learning models for prediction of unemployment in several countries (Med, Baltic, Balkan, Nordic, Benelux) for different forecasting horizons. FARIMA is a suitable model when long memory exists in a time series and has been applied successfully for predicting unemployment. To overcome the potential issue of heteroskedasticity, we explore whether FARIMA models with GARCH errors achieve more accurate results. To further improve forecasting accuracy, we consider models with non-normal errors. The above models however cannot take into account the non-linearity of the data and due to this fact, we employ three machine learning techniques to forecast unemployment rates, i.e. fully connected feed forward neural networks, support vector regression and multivariate adaptive regression splines. ARIMA and Holt-Winters are considered as benchmark models. Finally, the effects of different forecasting horizons and different geographic locations in terms of forecasting accuracy of the models are explored.


FARIMA/GARCH FARIMA Neural networks Support vector machines Multivariate adaptive regression splines Multiple steps ahead predictions Forecasting accuracy 



  1. Aas, K., & Hobæk Haff, I. (2005). NIG and skew student’s t: Two special cases of the Generalised Hyperbolic Distribution.Google Scholar
  2. Abramowitz, M., & Stegun, I. A. (1972). Handbook of mathematical functions with formulas, graphs, and mathematical tables. In National Bureau of Standards Applied Mathematics Series (Vol. 55). Washington, D.C: U.S. Government Printing Office.Google Scholar
  3. Aiken, M. (1996). A neural network to predict civilian unemployment rates. Journal of International Information Management, 5(1), 3.Google Scholar
  4. Baillie, R. T., Chung, C. F., & Tieslau, M. A. (1996). Analysing inflation by the fractionally integrated ARFIMA–GARCH model. Journal of Applied Econometrics, 11, 23–40.CrossRefGoogle Scholar
  5. Barndorff-Nielsen, O. (1977). Exponentially decreasing distributions for the logarithm of particle size. Proceedings of the Royal Society A, 353(1674), 401–419.CrossRefGoogle Scholar
  6. Basak, D., Pal, S., & Patranabis, D. C. (2007). Support vector regression. Neural Information Processing-Letters and Reviews, 11(10), 203–224.Google Scholar
  7. Blanchard, O. J., & Summers, L. H. (1986). Hysteresis and the European unemployment problem. NBER Macroeconomics Annual, 1, 15–78.CrossRefGoogle Scholar
  8. Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307–327.CrossRefGoogle Scholar
  9. Boné, R., & Crucianu, M. (2002). Multi-step-ahead prediction with neural networks: A review. 9emes Rencontres Internationales: Approches Connexionnistes en Sciences, 2, 97–106.Google Scholar
  10. Catania, L., & Bernardi, M. (2017). MCS: Model confidence set procedure. R package version 0.1.3.Google Scholar
  11. Conover, W. J. (1999). Some tests based on the binomial distribution. Practical nonparametric statistics (3rd ed., pp. 123–178). New York: Wiley.Google Scholar
  12. Conover, W. J., & Iman, R. L. (1979). On multiple-comparisons procedures. Los Alamos Sci. Lab. Tech. Rep. LA-7677-MS.Google Scholar
  13. Cromwell, J. B. (1994). Multivariate tests for time series models (Vol. 100). Thousand Oaks: Sage.CrossRefGoogle Scholar
  14. De Gooijer, J. G., Ray, B. K., & Kräger, H. (1998). Forecasting exchange rates using TSMARS. Journal of International Money and Finance, 17(3), 513–534.CrossRefGoogle Scholar
  15. Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7, 1–30.Google Scholar
  16. Dobre, I., & Alexandru, A. A. (2008). Modelling unemployment rate using Box–Jenkins procedure. Journal of Applied Quantitative Methods, 3(2), 156–166.Google Scholar
  17. Drucker, H., Burges, C. J., Kaufman, L., Smola, A. J., & Vapnik, V. (1997). Support vector regression machines. In Advances in neural information processing systems, pp. 155–161.Google Scholar
  18. Etuk, H., Uchendu, B., & Uyodhu, V. (2012). ARIMA fit to Nigerian unemployment data. Journal of Basic and Applied Scientific Research, 2(6), 5964–5970.Google Scholar
  19. Floros, C. (2005). Forecasting the UK unemployment rate: Model comparisons. International Journal of Applied Econometrics and Quantitative Studies, 2(4), 57–72.Google Scholar
  20. Fraley, C., Leisch, F., Maechler, M., Reisen, V., & Lemonte, A. (2012). Fracdiff: Fractionally differenced ARIMA aka ARFIMA (p, d, q) models, R package version, 1.4-2.Google Scholar
  21. Friedman, J. H. (1991). Multivariate adaptive regression splines. The Annals of Statistics, 19, 1–67.CrossRefGoogle Scholar
  22. Geweke, J., & Porter-Hudak, S. (1983). The estimation and application of long memory time series models. Journal of Time Series Analysis, 4(4), 221–238.CrossRefGoogle Scholar
  23. Ghalanos, A. (2013). Introduction to the rugarch package. R vignette.Google Scholar
  24. Gil-Alana, L. A. (2001). A fractionally integrated exponential model for UK unemployment. Journal of Forecasting, 20(5), 329–340.CrossRefGoogle Scholar
  25. Granger, C. W., & Joyeux, R. (1980). An introduction to long-memory time series models and fractional differencing. Journal of Time Series Analysis, 1(1), 15–29.CrossRefGoogle Scholar
  26. Hansen, P. R., Lunde, A., & Nason, J. M. (2011). The model confidence set. Econometrica, 79(2), 453–497.CrossRefGoogle Scholar
  27. Haykin, S. (1999). Neural networks. A comprehensive foundation (2nd ed.). London: Person Education. ISBN 0-13-273350-1.Google Scholar
  28. Hollander, M., Wolfe, D. A., & Chicken, E. (2013). Nonparametric statistical methods (Vol. 751). Hoboken: Wiley.Google Scholar
  29. Hosking, J. R. (1981). Fractional differencing. Biometrika, 68(1), 165–176.CrossRefGoogle Scholar
  30. Hurst, H. E. (1951). Long-term storage capacity of reservoirs. Transactions of the American Society of Civil Engineers, 116, 770–799.Google Scholar
  31. Jarque, C. M., & Bera, A. K. (1980). Efficient tests for normality, homoscedasticity and serial independence of regression residuals. Economics Letters, 6(3), 255–259.CrossRefGoogle Scholar
  32. Johnes, G. (1999). Forecasting unemployment. Applied Economics Letters, 6(9), 605–607.CrossRefGoogle Scholar
  33. Katris, C. (2015). Dynamics of Greece’s unemployment rate: Effect of the economic crisis and forecasting models. International Journal of Computational Economics and Econometrics, 5(2), 127–142.CrossRefGoogle Scholar
  34. Katris, C. (2019). Forecasting the unemployment of med counties using time series and neural network models. Journal of Statistical andEconometric Methods, 8(2), 37–49.Google Scholar
  35. Kurita, T. (2010). A forecasting model for Japan’s unemployment rate. Eurasian Journal of Business and Economics, 3(5), 127–134.Google Scholar
  36. Lee, T. H., White, H., & Granger, C. W. (1993). Testing for neglected nonlinearity in time series models: A comparison of neural network methods and alternative tests. Journal of Econometrics, 56(3), 269–290.CrossRefGoogle Scholar
  37. Lewis, P. A., & Stevens, J. G. (1991). Nonlinear modeling of time series using multivariate adaptive regression splines (MARS). Journal of the American Statistical Association, 86(416), 864–877.CrossRefGoogle Scholar
  38. Limas, M. C., Mere, J. B. O., Marcos, A. G., Ascacibar, F. J. M., Espinoza, A. V. P., Elias, F. A., & Ramos, J. M. P. (2014). AMORE: A more flexible neural network package. R package version 0.2-15.Google Scholar
  39. Lippmann, R. (1987). An introduction to computing with neural nets. IEEE ASSP Magazine, 4(2), 4–22.CrossRefGoogle Scholar
  40. Mandelbrot, B. (1972). Statistical methodology for nonperiodic cycles: From the covariance to R/S analysis. In Annals of economic and social measurement, Vol. 1, No. 3, NBER, pp. 259–290.Google Scholar
  41. Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., & Leisch, F. (2017). e1071: Misc functions of the department of statistics, probability theory group (formerly: E1071), TU Wien. R package version, 1.6-8.Google Scholar
  42. Milborrow, S. (2018). Derived from mda: Mars by Trevor Hastie and Rob Tibshirani. Uses Alan Miller’s Fortran utilities with Thomas Lumley’s leaps wrapper. Earth: Multivariate Adaptive Regression Splines, R package version 4.6.3.Google Scholar
  43. Mladenovic, J., Ilic, I., & Kostic, Z. (2017). Modeling the unemployment rate at the eu level by using Box–Jenkins methodology. KnE Social Sciences, 1(2), 1–13.CrossRefGoogle Scholar
  44. Montgomery, A. L., Zarnowitz, V., Tsay, R. S., & Tiao, G. C. (1998). Forecasting the US unemployment rate. Journal of the American Statistical Association, 93(442), 478–493.CrossRefGoogle Scholar
  45. Natrella, M. (2010). NIST/SEMATECH e-handbook of statistical methods.
  46. Olmedo, E. (2014). Forecasting spanish unemployment using near neighbour and neural net techniques. Computational Economics, 43(2), 183–197.CrossRefGoogle Scholar
  47. Özmen, A., & Weber, G. W. (2014). RMARS: Robustification of multivariate adaptive regression spline under polyhedral uncertainty. Journal of Computational and Applied Mathematics, 259, 914–924.CrossRefGoogle Scholar
  48. Özmen, A., Weber, G. W., & Batmaz, I. (2010). The new robust CMARS (RCMARS) method. In ISI proceedings of 24th MEC-EurOPT, pp. 362–368.Google Scholar
  49. Özmen, A., Weber, G. W., Batmaz, İ., & Kropat, E. (2011). RCMARS: Robustification of CMARS with different scenarios under polyhedral uncertainty set. Communications in Nonlinear Science and Numerical Simulation, 16(12), 4780–4787.CrossRefGoogle Scholar
  50. Pernía-Espinoza, A. V., Ordieres-Meré, J. B., Martínez-de-Pisón, F. J., & González-Marcos, A. (2005). TAO-robust backpropagation learning algorithm. Neural Networks, 18(2), 191–204.CrossRefGoogle Scholar
  51. Proietti, T. (2003). Forecasting the US unemployment rate. Computational Statistics & Data Analysis, 42(3), 451–476.CrossRefGoogle Scholar
  52. Rothman, P. (1998). Forecasting asymmetric unemployment rates. Review of Economics and Statistics, 80(1), 164–168.CrossRefGoogle Scholar
  53. Sapankevych, N. I., & Sankar, R. (2009). Time series prediction using support vector machines: A survey. IEEE Computational Intelligence Magazine, 4(2), 24–38.CrossRefGoogle Scholar
  54. Smola, A. J., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and Computing, 14(3), 199–222.CrossRefGoogle Scholar
  55. Sowell, F. (1992). Maximum likelihood estimation of stationaryunivariate fractionally integrated time series models. Journal of econometrics, 53(1–3), 165–188.CrossRefGoogle Scholar
  56. Stasinakis, C., Sermpinis, G., Theofilatos, K., & Karathanasopoulos, A. (2016). Forecasting US unemployment with radial basis neural networks, Kalman filters and support vector regressions. Computational Economics, 47(4), 569–587.CrossRefGoogle Scholar
  57. Stoklasová, R. (2012). Model of the unemployment rate in the Czech Republic. In Proceedings of 30th international conference on mathematical methods in economics, pp. 836–841.Google Scholar
  58. Taqqu, M. S., Teverovsky, V., & Willinger, W. (1995). Estimators for long-range dependence: An empirical study. Fractals, 3(04), 785–798.CrossRefGoogle Scholar
  59. Trafalis, T. B., & Ince, H. (2000). Support vector machine for regression and applications to financial forecasting. In Proceedings of the IEEE-INNS-ENNS international joint conference on neural networks, 2000. IJCNN 2000, Vol. 6, IEEE, pp. 348–353.Google Scholar
  60. Vapnik, V. N. (1995). The nature of statistical learning theory. New York: Springer.CrossRefGoogle Scholar
  61. Weber, G. W., Batmaz, İ., Köksal, G., Taylan, P., & Yerlikaya-Özkurt, F. (2012). CMARS: A new contribution to nonparametric regression with multivariate adaptive regression splines supported by continuous optimization. Inverse Problems in Science and Engineering, 20(3), 371–400.CrossRefGoogle Scholar
  62. Yüksel, S., & Adalı, Z. (2017). Determining influencing factors of unemployment in Turkey with MARS method. International Journal of Commerce and Finance, 3(2), 25–36.Google Scholar
  63. Zhang, G., Patuwo, B. E., & Hu, M. Y. (1998). Forecasting with artificial neural networks: The state of the art. International Journal of Forecasting, 14(1), 35–62.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Accounting and FinanceAthens University of Economics and BusinessAthensGreece

Personalised recommendations