Reconsidering Herbert A. Simon’s Major Themes in Economics: Towards an Experimentally Grounded Capital Structure Theory Drawing from His Methodological Conjectures

  • Edgardo BucciarelliEmail author
  • Nicola Mattoscio


Drawing inspiration from a renowned critique of standard economics moved by Simon (Q J Econ 69(1):99–118, 1955, Am Econ Rev 49(3):253–283, 1959), the authors of this paper develop a novel experimental design moving beyond the hypothesis-testing framework traditionally based on the use of deductive logic, while introducing a new way suitable for addressing the problem of understanding the impact of fluctuations and uncertainty in business decision-making. As claimed in the paper, this can be achieved by adopting an abductive approach to research design that incorporates an experimental methodology based on an original computerised real effort task, so that to explore firms—and other forms of business organisations—serving as experimental incubators in the market process, pursuing a range of economic enquiries more adherent to real world business applications. Among these enquiries, in this paper the authors focus on firms’ capital structure decisions in order to attempt to advance existing knowledge on the topic of experimental business research within the framework of economics.


Experimental economics Design research Abduction Iterative algorithm Data-driven discovery Corporate finance 

JEL Classification

C81 C91 D81 D91 G32 



We are very grateful to Kumaraswamy Vela Velupillai for prompting us to further explore Herbert A. Simon’s issues, even related to experimental design research. Furthermore, we are both very grateful to Stefano Zambelli and Shu-Heng Chen for many enlightening conversations and helpful comments on earlier drafts.


  1. Atkinson, G., & Whalen, C. J. (2011). Futurity: Cornerstone of post-Keynesian institutionalism. In C. J. Whalen (Ed.), Financial instability and economic security after the Great Recession. Cheltenham: Edward Elgar Publishing.Google Scholar
  2. Bagliano, F.-C., & Bertola, G. (2004). Models for dynamic macroeconomics. Oxford: Oxford University Press.CrossRefGoogle Scholar
  3. Barros, G. (2010). Herbert A. Simon and the concept of rationality: Boundaries and procedures. Brazilian Journal of Political Economy, 30(3), 455–472.CrossRefGoogle Scholar
  4. Baumol, W. J. (1968). Entrepreneurship in economic theory. American Economic Review, 58(2), 64–71.Google Scholar
  5. Becker, G. S. (1976). The economic approach to human behavior. Chicago, IL: University of Chicago Press.Google Scholar
  6. Bianchi, M., & Henrekson, M. (2005). Is neoclassical economics still entrepreneurless? Kyklos, 58(3), 353–377.CrossRefGoogle Scholar
  7. Bradley, M., Jarrell, G. A., & Kim, E. H. (1984). On the existence of an optimal capital structure: Theory and evidence. Journal of Finance, 39(3), 857–878.CrossRefGoogle Scholar
  8. Brüggen, A., & Strobel, M. (2007). Real effort versus chosen effort in experiments. Economics Letters, 96(2), 232–236.CrossRefGoogle Scholar
  9. Carpenter, J., Matthews, P., & Schirm, J. (2010). Tournaments and office politics: Evidence from a real effort experiment. American Economic Review, 100(1), 504–517.CrossRefGoogle Scholar
  10. Chang, H.-J. (2014). Economics: The user’s guide. New York: Bloomsburry Press.Google Scholar
  11. Chen, S.-H., & Kao, Y. F. (2016). Herbert Simon and agent-based computational economics. In R. Frantz & L. Marsh (Eds.), Minds, models and milieux—Commemorating the centennial of the birth of Herbert Simon (pp. 113–144). London: Palgrave Macmillan.Google Scholar
  12. Clarkson, G. P. E., & Simon, H. A. (1960). Simulation of individual and group behavior. American Economic Review, 50(5), 920–932.Google Scholar
  13. Cross, N. (2004). Expertise in design: An overview. Design Studies, 25(5), 427–442.CrossRefGoogle Scholar
  14. Dasgupta, S. (2003). Multidisciplinary creativity: The case of Herbert A. Simon. Cognitive Science, 27, 683–707.CrossRefGoogle Scholar
  15. Dow, S. (2015). Addressing uncertainty in economics and the economy. Cambridge Journal of Economics, 39(1), 33–47.CrossRefGoogle Scholar
  16. Doyle, Sir A. C. (1986) [1891]. A scandal in Bohemia. In Sir A. C. Doyle (1986) Sherlock Holmes: The complete novels and stories (Vols. 1 and 2). New York: Bantam Books.Google Scholar
  17. Falk, A., & Fehr, E. (2003). Why labour market experiments? Labour Economics, 10(4), 399–406.CrossRefGoogle Scholar
  18. Fisher, I. (1933). The debt-deflation theory of great depressions. Econometrica, 1(4), 337–357.CrossRefGoogle Scholar
  19. Flannery, M. J., & Rangan, K. P. (2006). Partial adjustment toward target capital structures. Journal of Financial Economics, 79(3), 469–506.CrossRefGoogle Scholar
  20. Foss, N. J. (2003). Bounded rationality in the economics of organization: “Much cited and little used”. Journal of Economic Psychology, 24, 245–264.CrossRefGoogle Scholar
  21. Gigerenzer, G., & Goldstein, D. G. (1996). Reasoning the fast and frugal way: Models of bounded rationality. Psychological Review, 103(4), 650–669.CrossRefGoogle Scholar
  22. Gill, D., & Prowse, V. (2012). A structural analysis of disappointment aversion in a real effort competition. The American Economic Review, 102(1), 469–503.CrossRefGoogle Scholar
  23. Giulini, G., Bucciarelli, E., & Silvestri, M. (2012). Exploring firms’ financial decisions by human and artificial agents. In J. Filipe & A. Fred (Eds.), ICAART 2012 (Vol. 2, pp. 184–189). Setúbal: SciTePress.Google Scholar
  24. Griliches, H. Z. (1986). Economic data issues. In H. Z. Griliches & M. D. Intriligator (Eds.), Handbook of econometrics (Vol. 3, pp. 1466–1514). Amsterdam: Elsevier.Google Scholar
  25. Hanson, N. R. (1958). Patterns of discovery—An inquiry into the conceptual foundations of science. Cambridge, MA: Cambridge University Press.Google Scholar
  26. Hanson, N. R. (1960). Is there a logic of scientific discovery? Australasian Journal of Philosophy, 38, 91–106.CrossRefGoogle Scholar
  27. Harris, M., & Raviv, A. (1991). The theory of capital structure. The Journal of Finance, 46(1), 297–355.CrossRefGoogle Scholar
  28. Harrison, G. W., & List, J. A. (2004). Field experiments. Journal of Economic Literature, 42(4), 1009–1055.CrossRefGoogle Scholar
  29. Hartman, R. (1972). The effect of price and cost uncertainty on investment. Journal of Economic Theory, 5(2), 258–266.CrossRefGoogle Scholar
  30. Hatchuel, A. (2001). Towards design theory and expandable rationality: The unfinished program of Herbert Simon. Journal of Management and Governance, 5(3–4), 260–273.CrossRefGoogle Scholar
  31. Hatchuel, A., Le Masson, P., & Weil, B. (2005). The development of science-based products: Managing by design spaces. Creativity and Innovation Management, 14(4), 345–354.CrossRefGoogle Scholar
  32. Hevner, A., March, S. T., Park, J., & Ram, S. (2004). Design science in information systems research. Management Information Systems Quarterly, 28(1), 75–105.CrossRefGoogle Scholar
  33. Hirshleifer, J. (1965). Investment decision under uncertainty: Choice-theoretic approaches. Quarterly Journal of Economics, 79(4), 509–536.CrossRefGoogle Scholar
  34. Hirshleifer, J., & Riley, J. G. (1979). The analytics of uncertainty and information—An expository survey. Journal of Economic Literature, 17(4), 1375–1421.Google Scholar
  35. Holt, C. C., Modigliani, F., Muth, J. F., & Simon, H. A. (1960). Planning production, inventories and work force. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  36. Holt, C. C., Modigliani, F., & Simon, H. A. (1955). Linear decision rule for production and employment scheduling. Management Science, 2(2), 1–30.CrossRefGoogle Scholar
  37. Jacobides, M. G. (2015). Rethinking the financial crisis: Structuring our historical understanding of a predictable evolutionary disaster. Business History Review, 57(5), 716–735.CrossRefGoogle Scholar
  38. Kahneman, D., & Tversky, A. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185(4157), 1124–1131.CrossRefGoogle Scholar
  39. Kaldor, N. (1982). The scourge of monetarism. Oxford: Oxford University Press.Google Scholar
  40. Knight, F. (1921). Risk, uncertainty and profit. Boston: Houghton Mifflin.Google Scholar
  41. Koeva P. (2009). Time-to-build and convex adjustment costs. Working paper no. 1/09. Washington: International Monetary Fund.Google Scholar
  42. Krippendorff, K. (2007). Design research: An oxymoron? In R. Michel (Ed.), Design research—Essays and selected projects (pp. 67–80). Zürich: Birkhäuser Verlag.Google Scholar
  43. Kulkarni, D., & Simon, H. A. (1988). The processes of scientific discovery: The strategy of experimentation. Cognitive Science, 12(2), 139–175.CrossRefGoogle Scholar
  44. Kulkarni, D., & Simon, H. A. (1990). Experimentation in machine discovery. In J. Shrager & P. Langley (Eds.), Computational models of scientific discovery and theory formation (pp. 255–273). San Mateo, CA: Morgan Kaufmann.Google Scholar
  45. Langley, P., Simon, H. A., Bradshaw, G. L., & Zytkow, J. M. (1987). Scientific discovery: Computational explorations of the creative processes. Cambridge, MA: MIT Press.Google Scholar
  46. Lewis, A. A. (1986). Structure and complexity: The use of recursion theory in the foundations of neoclassical mathematical economics and game theory. Manuscript/Monograph. Ithaca, NY: Department of Mathematics, Cornell University.Google Scholar
  47. Lewis, A. A. (1991). Some aspects of effectively constructive mathematics that are relevant to the foundations of neoclassical mathematical economics and the theory of games. Unpublished Manuscript. Irvine, CA: Department of Philosophy and the School of Social Sciences, University of California at Irvine.Google Scholar
  48. Lindblom, C. E. (1959). The science of “muddling through”. Public Administration Review, 19(2), 79–88.CrossRefGoogle Scholar
  49. Lopez-Iturriaga, F., & Rodriguez-Sanz, J. A. (2008). Capital structure and institutional setting: A decompositional and international analysis. Applied Economics, 40(14), 1851–1864.CrossRefGoogle Scholar
  50. Lucas, R. E., Jr. (1981). Studies in business cycle theory. Cambridge, MA: Harvard University Press.Google Scholar
  51. Mabsout, R. (2015). Abduction and economics: The contributions of Charles Peirce and Herbert Simon. Journal of Economic Methodology, 22(4), 491–516.CrossRefGoogle Scholar
  52. March, S. T., & Smith, G. F. (1995). Design and natural science research on information technology. Decision Support Systems, 15(4), 251–266.CrossRefGoogle Scholar
  53. Meier, R. C., Newell, W. T., & Pazer, H. L. (1969). Simulation in business and economics. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
  54. Modigliani, F., & Miller, M. H. (1958). The cost of capital, corporate finance, and the theory of investment. The American Economic Review, 48(3), 261–297.Google Scholar
  55. Myers, S. C., & Majluf, N. S. (1984). Corporate financing and investment decisions when firms have information that investors do not have. Journal of Financial Economics, 13(2), 187–221.CrossRefGoogle Scholar
  56. Nelson, R. R., & Winter, S. G. (1974). Neoclassical vs. evolutionary theories of economic growth: Critique and prospectus. The Economic Journal, 84(336), 886–905.CrossRefGoogle Scholar
  57. Newell, A., Shaw, J. C., & Simon, H. A. (1962). The process of creative thinking. In H. E. Gruber, G. Terrel, & M. Wertheimer (Eds.), Contemporary approaches to creative thinking (pp. 63–119). New York: Atherton Press.Google Scholar
  58. Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ: Prentice-Hall Inc.Google Scholar
  59. Newell, A., & Simon, H. A. (1976). Computer science as empirical inquiry: Symbols and search. Communications of the ACM, 19(3), 113–126.CrossRefGoogle Scholar
  60. Noussair, C. N., & Tucker, S. (2013). Experimental research on asset pricing. Journal of Economic Surveys, 27(3), 554–569.CrossRefGoogle Scholar
  61. Peirce, C. S. (1931). Collected papers, Vol. 1 of 8, Principles of philosophy. Cambridge, MA: Harvard University Press.Google Scholar
  62. Peirce, C. S. (1934). Collected papers, Vol. 5 of 8, Pragmatism and pragmaticism. Cambridge, MA: Harvard University Press.Google Scholar
  63. Penrose, E. (1995). The theory of the growth of the firm. Foreword to the third edition, reprinted by Oxford University Press, New York.Google Scholar
  64. Popper, K. R. (1957). The aim of science. Ratio, 1: 25–35, reprinted in Objective knowledge (1972). Oxford: Clarendon Press.Google Scholar
  65. Putnam, H. (1992). Comments on the lectures. In C. S. Peirce & K. L. Ketner (Eds.), Reasoning and the logic of things. The Cambridge conferences lectures of 1898 (pp. 55–104). Cambridge, MA: Harvard University Press.Google Scholar
  66. Rabin, M. O. (1957). Effective computability of winning strategies. In M. Dresher, A. W. Tucker, & P. Wolfe (Eds.), Annals of mathematics studies, No. 39: Contributions to the theory of games (Vol. 3, pp. 147–157). Princeton, NJ: Princeton University Press.Google Scholar
  67. Ross, S. A. (1977). The determination of financial structure: The incentive-signalling approach. The Bell Journal of Economics, 8(1), 23–40.CrossRefGoogle Scholar
  68. Rowe, P. G. (1987). Design thinking. Cambridge, MA: MIT Press.Google Scholar
  69. Rubinstein, M. E. (1973). A mean–variance synthesis of corporate financial theory. Journal of Finance, 28(1), 167–181.CrossRefGoogle Scholar
  70. Sarasvathy, S. D. (2003). Entrepreneurship as a science of the artificial. Journal of Economic Psychology, 24(2), 203–220.CrossRefGoogle Scholar
  71. Sarasvathy, S. D. (2004). Making it happen: Beyond theories of the firm to theories of firm design. Entrepreneurship Theory and Practice, 28(6), 519–531.CrossRefGoogle Scholar
  72. Sargent, T. J., & Wallace, N. (1975). “Rational” expectations, the optimal monetary instrument and the optimal money supply rule. Journal of Political Economy, 83(2), 241–254.CrossRefGoogle Scholar
  73. Sargent, T. J., & Wallace, N. (1981). Rational expectations and the theory of economic policy. In R. E. Lucas Jr. & T. J. Sargent (Eds.), Rational expectations and econometric practice (pp. 199–213). Minneapolis: University of Minnesota Press.Google Scholar
  74. Schauten, M., & Spronk, J. (2010). Optimal capital structure. In C. Zopounidis & P. M. Pardalos (Eds.), Handbook of multicriteria analysis. Applied optimization (Vol. 103, pp. 405–423). Berlin: Springer.CrossRefGoogle Scholar
  75. Schön, D. A. (1983). The reflective practitioner: How professionals think in action. London: Temple-Smith.Google Scholar
  76. Simon, H. A. (1955). A behavioral model of rational choice. The Quarterly Journal of Economics, 69(1), 99–118.CrossRefGoogle Scholar
  77. Simon, H. A. (1956). Rational choice and the structure of the environment. Psychological Review, 63(2), 129–138.CrossRefGoogle Scholar
  78. Simon, H. A. (1957) (1976) (1997) [1945]. Administrative behavior: A study of decision-making processes in administrative organizations (4th ed.). New York: Free Press.Google Scholar
  79. Simon, H. A. (1959). Theories of decision-making in economics and behavioral science. American Economic Review, 49(3), 253–283.Google Scholar
  80. Simon, H. A. (1962). The architecture of complexity. Proceedings of the American Philosophical Society, 106(6), 467–482.Google Scholar
  81. Simon, H. A. (1965). The logic of rational decision. The British Journal for the Philosophy of Science, 16, 169–186.CrossRefGoogle Scholar
  82. Simon, H. A. (1973). Does scientific discovery have a logic? Philosophy of Science, 40(4), 471–480.CrossRefGoogle Scholar
  83. Simon, H. A. (1977), Models of discovery and other topics in the methods of science, Dordecht: D. Riedel. Previously published in Van Roostelaar and Staal (eds.) (1968). Logic, methodology and philosophy of sciences III. Amsterdam: North-Holland Publishing.Google Scholar
  84. Simon, H. A. (1978). Information-processing theory of human problem solving. In W. K. Estes (Ed.), Handbook of learning and cognitive processes: V. Human information (pp. 271–295). Oxford: Lawrence Erlbaum.Google Scholar
  85. Simon, H. A. (1982). Models of bounded rationality. Cambridge, MA: MIT Press.Google Scholar
  86. Simon, H. A. (1984). On the behavioral and rational foundations of economic dynamics. Journal of Economic Behavior & Organization, 5(1), 35–55.CrossRefGoogle Scholar
  87. Simon, H. A. (1987). Making management decisions: The role of intuition and emotion. The Academy of Management Executive, 7(1), 57–63.CrossRefGoogle Scholar
  88. Simon, H. A. (1995). Artificial intelligence: An empirical science. Artificial Intelligence, 77(1), 95–127.CrossRefGoogle Scholar
  89. Simon, H. A. (1996) [1969]. The sciences of the artificial (1st ed. 1969, 3rd ed. 1996). Cambridge, MA: MIT Press.Google Scholar
  90. Simon, H. A. (1997). Machine discovery. Foundations of Science, 2, 171–200.Google Scholar
  91. Simon, H. A. (2000). Bounded rationality in social science: Today and tomorrow. Mind & Society, 1(1), 25–39.CrossRefGoogle Scholar
  92. Simon, H. A., & Ando, A. (1961). Aggregation of variables in dynamic systems. Econometrica, 29(2), 111–138.CrossRefGoogle Scholar
  93. Simon, H. A., & Hayes, J. R. (1976). Understanding process: Problem isomorphs. Cognitive Psychology, 8, 165–190.CrossRefGoogle Scholar
  94. Simon, H. A., Langley, P. W., & Bradshaw, G. L. (1981). Scientific discovery as problem solving. Synthese, 47(1), 1–27.CrossRefGoogle Scholar
  95. Stiglitz, J. E. (1969). A re-examination of the Modigliani–Miller theorem. American Economic Review, 59(5), 784–793.Google Scholar
  96. Sutcliffe, M. (2002). Simulations, games and role-play. In P. Davies (Ed.), The handbook for economic lecturers (pp. 1–26). Bristol: The Higher Education Academy Education Network.Google Scholar
  97. Taleb, N. N. (2010). The black swan: The impact of the highly improbable (2nd ed.). New York: Random House.Google Scholar
  98. Tirole, J. (2006). The theory of corporate finance. Princeton, NJ: Princeton University Press.Google Scholar
  99. van Dijk, F., Sonnemans, J., & van Winden, F. (2001). Incentive systems in a real effort experiment. European Economic Review, 45(2), 187–214.CrossRefGoogle Scholar
  100. Velupillai, K. (2000). Computable economics. The Arne Ryde memorial lectures. Oxford: Oxford University Press.CrossRefGoogle Scholar
  101. Velupillai, K. V. (2010a). Computable foundations for economics. London: Routledge.Google Scholar
  102. Velupillai, K. V. (2010b). Foundations of boundedly rational choice and satisficing decisions. Advances in Decision Sciences, 2010, 1–16.CrossRefGoogle Scholar
  103. Velupillai, K. V. (2018). Models of Simon. Abingdon: Routledge.Google Scholar
  104. Velupillai, K. V., & Kao, Y.-F. (2014). Computable and computational complexity theoretic bases for Herbert Simon’s cognitive behavioral economics. Cognitive Systems Research, 29–30, 40–52.CrossRefGoogle Scholar
  105. Visser, W. (2006). The cognitive artifacts of designing. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  106. Visser, W. (2009). Design: One, but in different forms. Design Studies, 30(3), 187–223.CrossRefGoogle Scholar
  107. Winter, S. G. (2016). The place of entrepreneurship in “the economics that might have been”. Small Business Economics, 47(1), 15–34.CrossRefGoogle Scholar
  108. Yang, G.-A., Chueh, H., & Lee, C.-H. (2014). Examining the theory of capital structure: Signal factor hypothesis. Applied Economics, 46(10), 1127–1133.CrossRefGoogle Scholar
  109. Zimring, C. M., & Craig, D. L. (2001). Defining design between domains: An argument for design research à la carte. In C. Eastman, M. McCracken, & W. Newstetter (Eds.), Design knowing and learning: Cognition in design education (pp. 125–146). Amsterdam: Elsevier.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Philosophical, Pedagogical and Economic-Quantitative Sciences (PPEQS), Section of Quantitative Methods and EconomicsUniversity of Chieti-PescaraPescaraItaly

Personalised recommendations