Advertisement

Computational Economics

, Volume 53, Issue 1, pp 141–168 | Cite as

Hodges–Lehmann Estimation of Static Panel Models with Spatially Correlated Disturbances

  • Christoph StrumannEmail author
Article
  • 59 Downloads

Abstract

Several studies point out a substantial downward bias of the Maximum Likelihood (ML) estimator of the spatial correlation parameter under strongly connected spatial structures. This paper proposes Hodges–Lehmann (HL) type interval and point estimators for the spatial parameter in static panel models with spatially autoregressive or moving average disturbances. HL estimators are implemented by means of ‘inverting’ common diagnostics for spatial correlation. Exact inference is implemented by means of Monte Carlo testing. A simulation study covering models with distinct degrees of spatial connectivity shows that HL confidence intervals are characterized by less size distortions and appear more robust against spatial connectivity in comparison with ML interval estimates. In addition, the bias of the HL point estimator based on the Moran’s I statistic is markedly smaller than its ML counterpart.

Keywords

Panel data Spatial correlation Specification tests Monte Carlo test Exact confidence sets Hodges–Lehmann estimators 

JEL Classification

C12 C15 C21 C23 

References

  1. Anselin, L., Le Gallo, J., & Jayet, H. (2008). Spatial panel econometrics. In L. Matyas & P. Sevestre (Eds.), The econometrics of panel data, fundamentals and recent developments in theory and practice (3rd ed., pp. 625–660). Berlin, Heidelberg: Springer.Google Scholar
  2. Anselin, L., & Rey, S. (1991). Properties of tests for spatial dependence in linear regression models. Geographical Analysis, 23, 112–131.Google Scholar
  3. Bao, Y. (2013). Finite sample bias of QMLE in spatial autoregressive models. Econometric Theory, 29, 68–88.CrossRefGoogle Scholar
  4. Bao, Y., & Ullah, A. (2007). Finite sample properties of maximum likelihood estimator. Journal of Econometrics, 137, 396–413.CrossRefGoogle Scholar
  5. Baumont, C. (2009). Spatial effects of urban public policies on housing values. Papers in Regional Science, 88, 301–326.CrossRefGoogle Scholar
  6. Billon, M., Ezcurra, R., & Lera-Lopez, F. (2009). Spatial effects in website adoption by firms in European regions. Growth and Change, 40(1), 54–84.CrossRefGoogle Scholar
  7. Bivand, R., Müller, W. G., & Reder, M. (2009). Power calculations for global and local Moran’s I. Computational Statistics & Data Analysis, 53(8), 2859–2872.CrossRefGoogle Scholar
  8. Bivand, R., & Szymanski, S. (2000). Modelling the spatial impact of the introduction of Compulsory Competitive Tendering. Regional Science and Urban Economics, 30(2), 203–219.CrossRefGoogle Scholar
  9. Bordignon, M., Cerniglia, F., & Revelli, F. (2003). In search of yardstick competition: A spatial analysis of Italian municipality property tax setting. Journal of Urban Economics, 54(2), 199–217.CrossRefGoogle Scholar
  10. Breusch, T. S., & Pagan, A. R. (1980). The Lagrange Multiplier test and its applications to model specification in econometrics. Review of Economic Studies, 47(1), 239–254.CrossRefGoogle Scholar
  11. Bröcker, J., Kretschmer, U., Schürmann, C., Spiekermann, K., Stelder, D., & Wegener, M. (2002). The IASON common spatial database. IASON Deliverable 3, Institute for Regional Research, Christian Albrechts University Kiel, Institute for Spatial Planning, University Dortmund.Google Scholar
  12. Burridge, P. (1980). On the Cliff-Ord-Test for spatial autocorrelation. Journal of the Royal Statistical Society B, 42, 107–108.Google Scholar
  13. Cliff, A., & Ord, J. (1981). Spatial process: Models and applications. London: Pion.Google Scholar
  14. Coudin, E., & Dufour, J.-M. (2011). Robust sign-based and Hodges–Lehmann estimators in linear median regression with heterogenous serially dependent errors. CIRANO working papers 2011s-24, CIRANO.Google Scholar
  15. Dufour, J.-M. (2006). Monte Carlo tests with nuisance parameters: A general approach to finite-sample inference and nonstandard asymptotics. Journal of Econometrics, 133(2), 443–477.CrossRefGoogle Scholar
  16. Dufour, J.-M. (1990). Exact tests and confidence sets in linear regressions with autocorrelated errors. Econometrica, 58(2), 475–94.CrossRefGoogle Scholar
  17. Dufour, J.-M., & Khalaf, L. (2002). Exact tests for contemporaneous correlation of disturbances in seemingly unrelated regressions. Journal of Econometrics, 106, 143–170.CrossRefGoogle Scholar
  18. Eurostat: Regions. (1999). Nomenclature of territorial units for statistics-NUTS. Luxembourg: Office for Official Publications of the European Communities.Google Scholar
  19. Farber, S., Paez, A., & Volz, E. (2009). Topology, dependency tests and estimation bias in network autoregressive models. In A. Paez, J. Le Gallo, R. Buliung, & S. Dall’Erba (Eds.), Advances in spatial sciences (pp. 29–57). Berlin: Spinger.Google Scholar
  20. Fingleton, B., & Lopez-Bazo, E. (2006). Empirical growth models with spatial effects. Papers in Regional Science, 85(2), 177–198.CrossRefGoogle Scholar
  21. Florax, R. J. G. M., & Rey, S. (1995). The impacts of misspecified spatial interaction in linear regression modles. In L. Anselin & R. J. G. M. Florax (Eds.), New directions in spatial econometrics (pp. 111–135). Berlin: Spinger.CrossRefGoogle Scholar
  22. Frees, E. W. (1995). Assessing cross-sectional correlation in panel data. Journal of Econometrics, 69, 393–414.CrossRefGoogle Scholar
  23. Friedman, M. (1937). The use of ranks to avoid the assumption of normality impicit in the Analysis of Variance. Journal of the American Statistical Association, 32, 675–701.CrossRefGoogle Scholar
  24. Fujimoto, K., Chou, C.-P., & Valente, T. W. (2011). The network autocorrelation model using two-mode data: Affiliation exposure and potential bias in the autocorrelation parameter. Social Networks, 33(3), 231–243.CrossRefGoogle Scholar
  25. Harvey, A. C., & Phillips, G. D. A. (1982). Testing for contemporaneous correlation of disturbances in systems of regression equations. Bulletin of Economic Research, 34(2), 79–81.CrossRefGoogle Scholar
  26. Hodges, J. L, Jr., & Lehmann, E. L. (1983). Hodges-Lehmann estimators. In N. L. Johnson, S. Kotz, & C. Read (Eds.), Encyclopedia of statistical sciences (Vol. 3, pp. 642–645). New York: Wiley.Google Scholar
  27. Kelejian, H. H., & Prucha, I. R. (2001). On the asymptotic distribution of the Moran I test statistic with applications. Journal of Econometrics, 104(2), 219–257.CrossRefGoogle Scholar
  28. Kelejian, H. H., & Prucha, I. R. (1999). A generalized moments estimator for the autoregressive parameter in a spatial model. International Economic Review, 40(2), 97–130.CrossRefGoogle Scholar
  29. Kelejian, H. H., & Prucha, I. R. (1998). A generalized spatial two-stage least squares procedure for estimating a spatial autoregressive model with autoregressive disturbances. The Journal of Real Estate Finance and Economics, 17(1), 99–121.CrossRefGoogle Scholar
  30. Lee, L.-F. (2004). Asymptotic distributions of Quasi-Maximum Likelihood estimators for spatial autoregressive models. Econometrica, 72(6), 1899–1925.CrossRefGoogle Scholar
  31. Lin, K.-P., Long, Z.-H., & Ou, B. (2010). The size and power of bootstrap tests for spatial dependence in a linear regression model. Computational Economics, 38(2), 153–171.CrossRefGoogle Scholar
  32. Liu, S. F., & Yang, Z. (2015a). Asymptotic distribution and finite sample bias correction of QML estimators for spatial error dependence model. Econometrics, 3(2), 376–411.CrossRefGoogle Scholar
  33. Liu, S. F., & Yang, Z. (2015b). Improved inferences for spatial regression models. Regional Science and Urban Economics, 55, 55–67.CrossRefGoogle Scholar
  34. Lopez-Bazo, E., Vaya, E., & Artis, M. (2004). Regional externalities and growth: Evidence from european regions. Journal of Regional Science, 44(1), 43–73.CrossRefGoogle Scholar
  35. Lundberg, J. (2006). Using spatial econometrics to analyse local growth in Sweden. Regional Studies, 40(3), 303–316.CrossRefGoogle Scholar
  36. Martellosio, F. (2010). Power properties of invariant tests for spatial autocorrelation in linear regression. Econometric Theory, 26, 152–186.CrossRefGoogle Scholar
  37. Mizruchi, M. S., & Neuman, E. J. (2008). The effect of density on the level of bias in the network autocorrelation model. Social Networks, 30, 190–200.CrossRefGoogle Scholar
  38. Neuman, E. J., & Mizruchi, M. S. (2010). Structure and bias in the network autocorrelation model. Social Networks, 32(4), 290–300.CrossRefGoogle Scholar
  39. Nordman, D. J. (2008). A blockwise empirical likelihood for spatial lattice data. Statistica Sinica, 18, 1111–1129.Google Scholar
  40. Paez, A., Scott, D. M., & Volz, E. (2008). Weight matrices for social influence analysis: An investigation of measurement errors and their effect on model identification and estimation quality. Social Networks, 30(4), 309–317.CrossRefGoogle Scholar
  41. Pesaran, M. H. (2004). General diagnostic tests for cross section dependence in panels. Cambridge working papers in economics, No. 1229, Faculty of Economics University of Cambridge.Google Scholar
  42. Ren, T., Long, Z., Zhang, R., & Chen, Q. (2014). Moran’s I test of spatial panel data model–Based on bootstrap method. Economic Modelling, 41, 9–14.CrossRefGoogle Scholar
  43. Revelli, F. (2002). Testing the tax mimicking versus expenditure spill-over hypotheses using English data. Applied Economics, 34(14), 1723–1731.CrossRefGoogle Scholar
  44. Rey, S. J., & Montouri, B. D. (1999). US regional income convergence: A spatial econometric perspective. Regional Studies, 33(2), 143–156.CrossRefGoogle Scholar
  45. Shiba, T., & Tsurumi, H. (1988). Bayesian and Non-Bayesian tests of independence in seemingly unrelated regressions. International Economic Review, 29, 377–389.CrossRefGoogle Scholar
  46. Smith, T. E. (2009). Estimation bias in spatial models with strongly connected weight matrices. Geographical Analysis, 41(3), 307–332.CrossRefGoogle Scholar
  47. Tsay, W.-J. (2004). Testing for contemporaneous correlation of disturbances in seemingly unrelated regressions with serial dependence. Economics Letters, 83, 69–76.CrossRefGoogle Scholar
  48. Villaverde, J. (2005). Provincial convergence in Spain: A spatial econometric approach. Applied Economics Letters, 12(11), 697–700.CrossRefGoogle Scholar
  49. Yang, Z. L. (2015). A general method for third-order bias and variance corrections on a nonlinear estimator. Journal of Econometrics, 186(1), 178–200.CrossRefGoogle Scholar
  50. Yang, Z., Yu, J., & Liu, S. F. (2016). Bias correction and refined inferences for fixed effects spatial panel data models. Regional Science and Urban Economics, 61, 52–72.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Institute for Entrepreneurship and Business DevelopmentUniversität zu LübeckLübeckGermany

Personalised recommendations