Computational Economics

, Volume 54, Issue 4, pp 1491–1503 | Cite as

Effect of Information Exchange in a Social Network on Investment

  • Ho Fai Ma
  • Ka Wai Cheung
  • Ga Ching Lui
  • Degang Wu
  • Kwok Yip SzetoEmail author


Herd effect in a multi-agent model with a static social network is investigated. The agents are playing the Parrondo’s game which can be considered as an investment game into two slot machines, C and D, so that playing continuously on one slot machine will lose, but by suitable switching the play on these two slot machines a player can win in the long run. This strange effect has its origin in the non-equilibrium physics of Brownian ratchets and can be analysed using Markov chain. The impact of information exchange on the collective behaviour of the players is investigated in a social network, with the players adopting one of two strategies: ‘Follow the winner’ or ‘Avoid the loser’. Players using either strategy alone will lead to loss for the entire population. This herd effect is observed numerically and explained using Markov chain. For the ring type social network, the population can achieve positive gain with two protocols for information exchange when the players communicate with their nearest neighbours. The first protocol is to randomly mix the game strategy ‘Follow the winner’ with ‘Avoid the loser’. The second protocol is to give each player a pre-set probability to switch between ‘Follow the winner’ and ‘Avoid the loser’. We provide a heuristic explanation for the difference in gain of these two protocols based on the probability distribution of the resident time for the player in his selected strategy. We also discuss the evolution of their wealth distributions.


Herd effect Multi-agent system Information exchange Social network Parrondo’s paradox 



K. Y. Szeto acknowledges the support of Grants FSGRF13SC25 and FSGRF14SC28.


  1. Ajdari, A., & Prost, J., (1992). Mouvement induit par un potentiel priodique de basse symtrie: Dilectrophorese pulse. Comptes rendus de l’Acadmie des sciences Srie 2, Mcanique, Physique, Chimie, Sciences de l’univers. Sciences de la Terre, 315(13), 1635–1639.Google Scholar
  2. Astumian, R. D., & Bier, M. (1994). Fluctuation driven ratchets: Molecular motors. Physical Review Letters 72(11), 1766.
  3. Brut, A., Arakelyan, A., Petrosyan, A., Ciliberto, S., Dillenschneider, R., & Lutz, E. (2012). Experimental verification of Landauer/’s principle linking information and thermodynamics. Nature, 483(7388), 187–189.CrossRefGoogle Scholar
  4. Cheung, K. W., Ma, H. F., Wu, D., Lui, G. C., & Szeto, K. Y. (2016). Winning in sequential Parrondo games by players with short-term memory. Journal of Statistical Mechanics: Theory and Experiment 2016(5), 054042.
  5. Dinis, L. (2008). Optimal sequence for Parrondo games. Physical Review E 77(2), 021124.
  6. Flitney, A. P., & Abbott, D. (2003). Quantum models of Parrondo’s games. Physica A: Statistical Mechanics and its Applications 324(1), 152–156.
  7. Flitney, A. P., Ng, J., & Abbott, D. (2002). Quantum Parrondo’s games. Physica A: Statistical Mechanics and its Applications 314(1), 35–42.
  8. Harmer, G. P., & Abbott, D. (1999). Parrondo’s paradox. Statistical Science, 206–213.
  9. Harmer, G. P., & Abbott, D. (2002). A review of Parrondo’s paradox. Fluctuation and Noise. Letters 2(02), R71–R107.
  10. Harmer, G. P., Abbott, D., & Taylor, P. G. (2000). The paradox of Parrondo’s games. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society (Vol. 456, pp. 247–259).
  11. Hnggi, P., & Bartussek, R. (1996). Brownian rectifiers: How to convert Brownian motion into directed transport. In: J. Parisi, S. C. Müller & W. Zimmermann (Eds.), Nonlinear physics of complex systems (pp. 294–308). Berlin: Springer.
  12. Landauer, R. (1992). Information is physical. In IBM Thomas J. Watson Research Division.
  13. Parrondo, J. M., Harmer, G. P., & Abbott, D. (2000). New paradoxical games based on Brownian ratchets. Physical Review Letters 85(24), 5226.
  14. Parrondo, J. M. R. (1996). How to cheat a bad mathematician. In EEC HC & M network on complexity and chaos.Google Scholar
  15. Parrondo, J. M. R., & de Cisneros, B. J. (2002). Energetics of Brownian motors: A review. Applied Physics A 75(2), 179–191.
  16. Reimann, P. (2002). Brownian motors: Noisy transport far from equilibrium. Physics reports 361(2), 57–265. Scholar
  17. Schuster, H. G., Klages, R., Just, W., & Jarzynski, C. (2013). Non-equilibrium statistical physics of small systems: Fluctuation relations and beyond. Hoboken: Wiley.Google Scholar
  18. Smoluchowski, M. (1927). Experimentell nachweisbare, der blichen Thermodynamik widersprechende Molekularphnomene. Pisma Mariana Smoluchowskiego 1(2), 226–251.
  19. Toral, R. (2001). Cooperative Parrondo’s games. Fluctuation and noise. Letters 1(01), L7–L12.
  20. Toyabe, S., Sagawa, T., Ueda, M., Muneyuki, E., & Sano, M. (2010). Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality. Nature Physics6(12), 988–992.
  21. Wu, D., & Szeto, K. Y. (2014a) Applications of genetic algorithm on optimal sequence for Parrondo games. In: ECTA 2014-proceedings of the international conference on evolutionary computation theory and applications (p. 30).
  22. Wu, D., & Szeto, K. Y. (2014b). Extended Parrondo’s game and Brownian ratchets: Strong and weak Parrondo effect. Physical Review E89(2), 022142.

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of PhyiscsThe Hong Kong University of Science and TechnologyHong KongChina

Personalised recommendations