Advertisement

Computational Economics

, Volume 53, Issue 1, pp 27–50 | Cite as

Monetary Transmission Channels in DSGE Models: Decomposition of Impulse Response Functions Approach

  • Miroljub Labus
  • Milica LabusEmail author
Article

Abstract

The paper presents decomposition of impulse response functions (IRFs) as a new diagnostic tool for dynamic stochastic general equilibrium (DSGE) models. This method works with any DSGE model of arbitrary complexity or theoretical background. It is also applicable to any policy transmission channels. We illustrate it with monetary transmission mechanisms in two New Keynesian general equilibrium models: QUEST_III model of the European Commission and Smets–Wouters model of the USA economy. For that purpose, we use DYNARE platform for solving the models and provide a MATLAB file for IRFs decomposition. The underlying software can handle decomposition of IRFs using both the first-order and the second-order approximation of Taylor series to equilibrium relations. An IRF aggregates partial contributions of all state variables to impulse responses of a model’s variable to a stochastic shock. The IRF decomposition identifies individual contributions of state variables and marks each particular channel that a policy shock uses to propagate throughout the model. We show in two illustrated cases that monetary transmission channels might be quite distinct even if DSGE models employ the same (Taylor) policy rule and reveal similar IRFs. More specifically, IRFs initiated by a monetary shock might misrepresent the pure interest rate impact on some variables. Decomposition of monetary IRFs casts more light on flexibility needed in an economy to contain negative impact of a monetary shock.

Keywords

Impulse response functions QUEST III model Smets–Wouters model Monetary policy Rigidities DYNARE 

Notes

Acknowledgements

We thank to Marco Ratto for useful comments and research guidance. Of course, we are responsible for computation and findings.

References

  1. Adjemian, S., Bastani, H., Karame, F., Juillard, M., Maih, J., & Mihoubi, F., et al. (2011). DYNARE: Reference manual, version 4. DYNARE working papers, CEPREMAP. http://www.dynare.org.
  2. Anderson, G. (2008). Solving linear rational expectations models: A horse race. Computational Economics, 31(2), 95–113. doi: 10.1007/s10614-007-9108-0.CrossRefGoogle Scholar
  3. Blanchard, O. J., & Kahn, C. M. (1980). The solution of linear difference models under rational expectations. Econometrica, 48(5), 1305–1311.Google Scholar
  4. Clarida, R. H., Gali, J., & Gertler, M. (1999). The science of monetary policy: A new Keynesian perspective. Journal of Economic Literature, 37(December), 1661–1707. doi: 10.2139/ssrn.155910.CrossRefGoogle Scholar
  5. Collard, F., & Juillard, M. (2001). Accuracy of stochastic perturbation methods: The case of asset pricing models. Journal of Economic Dynamics & Control, 25. http://pages.stern.nyu.edu/~dbackus/GE_asset_pricing/computation/CollardJuillardstochperturbationJEDC01.pdf.
  6. Hamilton, J. D. (1994). Time series analysis. Princeton University Press. doi: 10.2307/1270781.
  7. Hansen, G. D. (1985). Indivisible labor and the business cycle. Journal of Monetary Economics, 16(3), 309–327. doi: 10.1016/0304-3932(85)90039-X.CrossRefGoogle Scholar
  8. Judd, K. L. (1998). Numerical methods in economics. MIT Press. https://mitpress.mit.edu/books/numerical-methods-economics.
  9. Judd, K. L., & Jin, H.-H. (2002). Perturbation methods for general dynamic stochastic models. Working paper, pp. 1–44. http://web.stanford.edu/~judd/papers/PerturbationMethodRatEx.pdf.
  10. King, R. G., Plosser, C. I., & Rebelo, S. T. (1988). Production, growth and business cycles. Journal of Monetary Economics, 21, 195–232.Google Scholar
  11. King, R. G., Plosser, C. I., & Rebelo, S. T. (2002). Production, growth and business cycles?: Technical appendix. Computational Economics, 20(1–2), 87–116.CrossRefGoogle Scholar
  12. King, R. G., & Watson, M. W. (2002). System reduction and solution algorithms for singular linear difference systems under rational expectations. Computational Economics, 20(1–2), 57–86. doi: 10.1023/A:1020576911923.CrossRefGoogle Scholar
  13. Klein, P. (2000). Using the generalized Schur form to solve a multivariate linear rational expectations model. Journal of Economic Dynamics and Control, 24(10), 1405–1423. doi: 10.1016/S0165-1889(99)00045-7.CrossRefGoogle Scholar
  14. Kydland, Finn E., & Prescott, E. C. (1982). Time to build and aggregate fluctuations. Econometrica, 50, 1345–1370. doi: 10.2307/1913386.CrossRefGoogle Scholar
  15. Long, J. B., & Plosser, C. I. (1983). Real business cycles. Journal of Political Economy, 91(1), 39–69. doi: 10.1016/0304-3932(88)90029-3.CrossRefGoogle Scholar
  16. Ljungqvist, L., & Sargent, T. J. (2000). Recursive macroeconomic theory (2nd ed.). Cambridge: MIT Press.Google Scholar
  17. McCandless, G. (2008). The ABCs of RBCs: An introduction to dynamic macroeconomic models. Harvard University Press. http://www.amazon.com/dp/0674028147.
  18. Ratto, M., Roeger, W., & in’t Veld, J. (2009). QUEST III: An estimated DSGE model of the euro area with fiscal and monetary policy. Economic Modelling, 26. doi: 10.2765/86277.
  19. Rotemberg, J. J., & Woodford, M. (1997). An optimization-based framework for the evaluation. In NBER macroeconomics annual 1997 (Vol. 12, pp. 297–361). http://www.nber.org/chapters/c11041.
  20. Sims, C. (1980). Macroeconomics and reality. Econometrica, 48, 1–48.CrossRefGoogle Scholar
  21. Sims, C. (2002). Solving linear rational expectations models. Computational Economics, 20(1–2), 1–21. http://sims.princeton.edu/yftp/gensys/.
  22. Smets, F., & Wouters, R. (2007). Shocks and frictions in US business cycles: A Bayesian DSGE approach. American Economic Review, 97(3), 586–606. doi: 10.1257/aer.97.3.586.CrossRefGoogle Scholar
  23. Stokey, N. L., Lucas, R. E. J., & Prescott, E. C. (1989). Recursive methods in economic dynamics. Cambridge: Harvard University Press.Google Scholar
  24. Uhlig, H. (2001). A toolkit for analysing nonlinear dynamic stochastic models easily. In R. Marimon & A. Scott (Eds.), Computational methods for the study of dynamic economies, (Chap 3). Oxford University Press. doi: 10.1093/0199248273.003.0003.
  25. Woodford, M. (2003). Interest and prices: Foundations of a theory of monetary policy. Princeton University Press. http://press.princeton.edu/titles/7603.html.

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Law and Economics, Faculty of LawUniversity of BelgradeBelgradeSerbia
  2. 2.Department of e-Business, Faculty of Organisational SciencesUniversity of BelgradeBelgradeSerbia

Personalised recommendations