On the Allocation of Multiple Divisible Assets to Players with Different Utilities

Article
  • 50 Downloads

Abstract

When there is a dispute between players on how to divide multiple divisible assets, how should it be resolved? In this paper we introduce a multi-asset game model that enables cooperation between multiple agents who bargain on sharing K assets, when each player has a different value for each asset. It thus extends the sequential discrete Raiffa solution and the Talmud rule solution to multi-asset cases.

Keywords

Spectrum optimization Distributed coordination Game theory Raiffa bargaining solution Talmud rule 

References

  1. Anbarci, N., & Sun, Cj. (2013). Robustness of intermediate agreements and bargaining solutions. Games and Economic Behavior, 77(1), 367–376. doi:10.1016/j.geb.2012.11.001.CrossRefGoogle Scholar
  2. Aumann, R. J., & Maschler, M. (1985). Game theoretic analysis of a bankruptcy problem from the talmud. Journal of Economic Theory, 36(2), 195–213.CrossRefGoogle Scholar
  3. Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  4. Calleja, P., Borm, P., & Hendrickx, R. (2005). Multi-issue allocation situations. European Journal of Operational Research, 164(3), 730–747.CrossRefGoogle Scholar
  5. Dagan, N., & Volij, O. (1993). The bankruptcy problem: A cooperative bargaining approach. Mathematical Social Sciences, 26(3), 287–297. doi:10.1016/0165-4896(93)90024-D.CrossRefGoogle Scholar
  6. Diskin, A., Koppel, M., & Samet, D. (2011). Generalized Raiffa solutions. Games and Economic Behavior, 73(2), 452–458. doi:10.1016/j.geb.2011.04.002.CrossRefGoogle Scholar
  7. González-Alcón, C., Borm, P., & Hendrickx, R. (2007). A composite run-to-the-bank rule for multi-issue allocation situations. Mathematical Methods of Operations Research, 65(2), 339–352.CrossRefGoogle Scholar
  8. Haake, C. J. (2009). Dividing by demanding: Object division through market procedures. International Game Theory Review, 11(01), 15–32.CrossRefGoogle Scholar
  9. Hinojosa, M., Mármol, A. M., & Sánchez, F. (2012). A consistent talmudic rule for division problems with multiple references. Top, 20(3), 661–678.CrossRefGoogle Scholar
  10. Ju, B. G., Miyagawa, E., & Sakai, T. (2007). Non-manipulable division rules in claim problems and generalizations. Journal of Economic Theory, 132(1), 1–26.CrossRefGoogle Scholar
  11. Kalai, E. (1977). Nonsymmetric Nash solutions and replications of 2-person bargaining. International Journal of Game Theory, 6, 129–133.CrossRefGoogle Scholar
  12. Kalai, E., & Smorodinsky, M. (1975). Other solutions to Nash’s bargaining problem. Econometrica, 43(3), 513–518.CrossRefGoogle Scholar
  13. Kaminski, M.M. (2000). ’Hydraulic’ rationing. Mathematical Social Sciences 40(2):131–155.Google Scholar
  14. Leshem, A., & Zehavi, E. (2006). Bargaining over the interference channel. In: IEEE International Symposium on Information Theory, 2006, pp 2225–2229.Google Scholar
  15. Leshem, A., & Zehavi, E. (2008). Cooperative game theory and the Gaussian interference channel. IEEE Journal on Selected Areas in Communications, 26(7), 1078–1088.CrossRefGoogle Scholar
  16. Livne, Z. A. (1989). Axiomatic characterizations of the Raiffa and the Kalai–Smorodinsky solutions to the bargaining problem. Operations Research, 37(6), 972–980.CrossRefGoogle Scholar
  17. Mármol, A. M., & Ponsati, C. (2008). Bargaining over multiple issues with maximin and leximin preferences. Social Choice and Welfare, 30(2), 211–223.CrossRefGoogle Scholar
  18. Mjelde, K. M. (1983). Properties of Pareto optimal allocations of resources to activities. Modeling, Identification and Control, 4(3), 167–173. doi:10.4173/mic.1983.3.3.CrossRefGoogle Scholar
  19. Moreno-Ternero, J. D., & Villar, A. (2006). The tal-family of rules for bankruptcy problems. Social Choice and Welfare, 27(2), 231–249.CrossRefGoogle Scholar
  20. Myerson (1991). Game theory. Analysis of conflict. Cambridge, MA: Harvard University Press.Google Scholar
  21. Nash, J. (1950). The bargaining problem. Econometrica, 18(2), 155–162.CrossRefGoogle Scholar
  22. Nash, J. (1953). Two-person cooperative games. Econometrica, 21(1), 128–140.CrossRefGoogle Scholar
  23. Nemirovski, A. (1996). Interior point polynomial time methods in convex programming. Technion-Israel Institute of Technology, Technion City, Haifa: Lecture Notes-Faculty of Industrial Engineering and Management, 32000.Google Scholar
  24. O’Neill, B. (1982). A problem of rights arbitration from the talmud. Mathematical Social Sciences, 2(4), 345–371.CrossRefGoogle Scholar
  25. Osborne, M. J., & Rubinstein, A. (1990). Bargaining and markets (Vol. 34). San Diego: Academic Press.Google Scholar
  26. Peters, H., & Damme, E. V. (1991). Characterizing the Nash and Raiffa bargaining solutions by disagreement point axioms. Mathematics of Operations Research, 16, 447–461.Google Scholar
  27. Piniles H (1861). Darkah shel Torah. Vienna.Google Scholar
  28. Ponsati, C., & Watson, J. (1997). Multiple-issue bargaining and axiomatic solutions. International Journal of Game Theory, 26(4), 501–524.CrossRefGoogle Scholar
  29. Quant, M., Borm, P., Hendrickx, R., & Zwikker, P. (2006). Compromise solutions based on bankruptcy. Mathematical Social Sciences, 51(3), 247–256.CrossRefGoogle Scholar
  30. Raiffa, H. (1953). Arbitration schemes for generalized two-person games. Annals of Mathematics Studies, 28, 361–387.Google Scholar
  31. Salonen, H. (1988). Decomposable solutions for n-person bargaining games. European Journal of Political Economy, 4(3), 333–347.CrossRefGoogle Scholar
  32. Tanimura, E., & Thoron, S. (2008). A mechanism for solving bargaining problems between risk averse players. http://hal.archives-ouvertes.fr/halshs-00325695/.
  33. Thomson, W. (2003). Axiomatic and game-theoretic analysis of bankruptcy and taxation problems: A survey. Mathematical Social Sciences, 45(3), 249–297.CrossRefGoogle Scholar
  34. Thomson, W. (2008). Two families of rules for the adjudication of conflicting claims. Social Choice and Welfare, 31(4), 667–692.CrossRefGoogle Scholar
  35. Thomson, W. (2012). Axiomatic and game-theoretic analysis of bankruptcy and taxation problems: An update. Tech. rep., mimeo,Google Scholar
  36. Thomson, W. (2013a). Axiomatic and game-theoretic analysis of bankruptcy and taxation problems: An update. Tech. rep.: University of Rochester-Center for Economic Research (RCER).Google Scholar
  37. Thomson, W. (2013b). Game-theoretic analysis of bankruptcy and taxation problems: Recent advances. International Game Theory Review, 15(03), 1–60.Google Scholar
  38. Trockel W (2009). An axiomatization of the sequential Raiffa solution. A Manuscript, No 425, IMW-Bielefeld University.Google Scholar
  39. Trockel, W. (2011). An exact non-cooperative support for the sequential Raiffa solution. Journal of Mathematical Economics, 47(1), 77–83. doi:10.1016/j.jmateco.2010.08.011.CrossRefGoogle Scholar
  40. Trockel, W. (2014a). Axiomatization of the discrete Raiffa solution. Economic Theory Bulletin, 3, 1–9.Google Scholar
  41. Trockel, W. (2014b). Robustness of intermediate agreements for the discrete raiffa solution. Games and Economic Behavior, 85, 32–36.CrossRefGoogle Scholar
  42. Zehavi, E., & Leshem, A. (2009). Alternative bargaining solutions for the interference channel. In: 3rd IEEE international workshop on computational advances in multi-sensor adaptive processing (CAMSAP), 2009, pp 9–12.Google Scholar
  43. Zehavi, E., Leshem, A., Levanda, R., & Han, Z. (2013). Weighted max–min resource allocation for frequency selective channels. IEEE Transactions on Signal Processing, 61(15), 3723–3732.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Faculty of EngineeringBar-Ilan UniversityRamat-GanIsrael
  2. 2.Bar-Ilan UniversityRamat-GanIsrael

Personalised recommendations