Advertisement

Computational Economics

, Volume 51, Issue 3, pp 407–425 | Cite as

A Discontinuity Model of Technological Change: Catastrophe Theory and Network Structure

  • Torsten Heinrich
Article
  • 201 Downloads

Abstract

Discontinuities as a crucial aspect of economic systems have been discussed both verbally—particularly in institutionality theory—and formally, chiefly using catastrophe theory. Catastrophe theory has, however, been criticized heavily for lacking micro-foundations and has mainly fallen out of use in economics and social sciences. The present paper proposes a simple catastrophe theory model of technological change with network externalities and reevaluates the value of such a model by adding an agent-based micro layer. To this end an agent-based variant of the model is proposed and investigated specifically with regard to the network structure among the agents. While the macro level of the model produces a classical cusp catastrophe—a result that is preserved in the agent-based form—it is found that the behavior of the model changes locally depending on the network structure, especially if networks with features that resemble social networks (low diameter, high clustering, power law distributed node degree) are considered. While the present work investigates merely an aspect out of a large possibility space, it encourages further research using agent-based catastrophe theory models especially of economic aspects to which catastrophe theory has previously successfully been applied; aspects such as technological and institutional change, economic crises, or industry structure.

Keywords

Network structures Agent-based modeling Catastrophe theory Information and communication technology Preferential attachment networks Technological change 

Notes

Acknowledgments

The author would like to thank an anonymous reviewer as well as the discussants of the 2014 EAEPE conference for many helpful comments. The usual disclaimers apply.

Compilance with ethical standards

Conflict of interest

There are no conflicts of interest.

Ethical approval

The research presented in this paper is in compliance with accepted ethical standards for good science.

References

  1. Arthur, W. B. (1989). Competing technologies, increasing returns, and lock-in by historical events. Economic Journal, 99(394), 116–131.CrossRefGoogle Scholar
  2. Arthur, W. B., Ermoliev, Y. M., & Kaniovski, Y. M. (1983 [1982]). A generalized urn problem and its applications. Cybernetics, 19, 61–71. (translated from Russian [Kibernetica 1:49–56])Google Scholar
  3. Arthur, W. B., Ermoliev, Y. M., & Kaniovski, Y. M. (1987). Path dependent processes and the emergence of macro-structure. European Journal of Operational Research, 30, 294–303.CrossRefGoogle Scholar
  4. Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512. doi: 10.1126/science.286.5439.509.CrossRefGoogle Scholar
  5. Barash, V., Cameron, C., & Macy, M. (2012). Critical phenomena in complex contagions. Social Networks, 34(4), 451–461. doi: 10.1016/j.socnet.2012.02.003.CrossRefGoogle Scholar
  6. Bass, F. M. (1969). A new product growth for model consumer durables. Management Science, 15(5), 215–227. doi: 10.1287/mnsc.15.5.215.CrossRefGoogle Scholar
  7. Buendía, F. (2013). Self-organizing market structures, system dynamics, and urn theory. Complexity, 18(4), 28–40. doi: 10.1002/cplx.21442.CrossRefGoogle Scholar
  8. Dahui, W., Li, Z., & Zengru, D. (2006). Bipartite producer-consumer networks and the size distribution of firms. Physica A: Statistical Mechanics and its Applications, 363(2), 359–366. doi: 10.1016/j.physa.2005.08.006.CrossRefGoogle Scholar
  9. David, P. A. (1985). Clio and the economics of QWERTY. American Economic Review, 75(2), 332–337.Google Scholar
  10. David, P. A. (1992). Heroes, herds and hysteresis in technological history: Thomas Edison and the battle of the systems reconsidered. Industrial and Corporate Change, 1(1), 129–180. doi: 10.1093/icc/1.1.129.CrossRefGoogle Scholar
  11. David, P. A., & Bunn, J. A. (1988). The economics of gateway technologies and network evolution: Lessons from electricity supply history. Information Economics and Policy, 3(2), 165–202. doi: 10.1016/0167-6245(88)90024-8.CrossRefGoogle Scholar
  12. David, P. A., & Steinmueller, W. (1994). Economics of compatibility standards and competition in telecommunication networks. Information Economics and Policy, 6(3–4), 217–241. doi: 10.1016/0167-6245(94)90003-5.CrossRefGoogle Scholar
  13. Delli Gatti, D., Di Guilmi, C., Gaffeo, E., Giulioni, G., Gallegati, M., & Palestrini, A. (2005). A new approach to business fluctuations: heterogeneous interacting agents, scaling laws and financial fragility. Journal of Economic Behavior & Organization, 56(4), 489–512. doi: 10.1016/j.jebo.2003.10.012. Festschrift in honor of Richard H. Day.
  14. Dolfsma, W., & Leydesdorff, L. (2009). Lock-in and break-out from technological trajectories: Modeling and policy implications. Technological Forecasting and Social Change, 76(7), 932–941. doi: 10.1016/j.techfore.2009.02.004.CrossRefGoogle Scholar
  15. Dosi, G. (1982). Technological paradigms and technological trajectories: A suggested interpretation of the determinants and directions of technical change. Research Policy, 11(3), 147–162. doi: 10.1016/0048-7333(82)90016-6.CrossRefGoogle Scholar
  16. Dou, W., & Ghose, S. (2006). A dynamic nonlinear model of online retail competition using cusp catastrophe theory. Journal of Business Research, 59(7), 838–848. doi: 10.1016/j.jbusres.2006.02.003.CrossRefGoogle Scholar
  17. Dunbar, R. I. M. (1993). Coevolution of neocortical size, group size and language in humans. Behavioral and Brain Sciences, 16(04), 681–694. doi: 10.1017/S0140525X00032325.CrossRefGoogle Scholar
  18. Freeman, C., & Perez, C. (1988). Structural crisis of adjustment, business cycles and investment behaviour. In G. Dosi, C. Freeman, R. Nelson, G. Silverberg, & L. Soete (Eds.), Technological change and economic theory (pp. 38–66). London: Pinter Publishers.Google Scholar
  19. Granovetter, M. S. (1973). The strength of weak ties. American Journal of Sociology, 78(6), 1360–1380.CrossRefGoogle Scholar
  20. Gräbner, C., & Kapeller, J. (2016). The micro-macro link in heterodox economics. In L. Chester, C. D’Ippoliti, & T.-H. Jo (Eds.), The handbook of heterodox economics. Oxon: Routledge.Google Scholar
  21. Gräbner, C., Heinrich, T., & Kudic, M. (2016). Structuration processes in complex dynamic systems an overview and reassessment. MPRA Paper 69095. http://mpra.ub.uni-muenchen.de/69095/.
  22. Heinrich, T. (2014). Standard wars, tied standards, and network externality induced path dependence in the ICT sector. Technological Forecasting and Social Change, 81, 309–320. doi: 10.1016/j.techfore.2013.04.015.CrossRefGoogle Scholar
  23. Herbig, P. A. (1991). A cusp catastrophe model of the adoption of an industrial innovation. Journal of Product Innovation Management, 8(2), 127–137. doi: 10.1016/0737-6782(91)90006-K.CrossRefGoogle Scholar
  24. Katz, M. L., & Shapiro, C. (1985). Network externalities, competition and compatibility. American Economic Review, 75(3), 424–440.Google Scholar
  25. Lange, R., Mcdade, S. R., & Oliva, T. A. (2004). The estimation of a cusp model to describe the adoption of Word for Windows. Journal of Product Innovation Management, 21(1), 15–32. doi: 10.1111/j.0737-6782.2004.00051.x.CrossRefGoogle Scholar
  26. Myrdal, G. (1974). What is development? Journal of Economic Issues, 8(4), 729–736.CrossRefGoogle Scholar
  27. Nelson, R. R. (1968). A ”diffusion model” of international productivity differences in manufacturing industry. American Economic Review, 58, 1219–1248.Google Scholar
  28. Newman, M. E. J. (2005). Power laws, Pareto distributions and Zipf’s law. Contemporary Physics, 46(5), 323–351.CrossRefGoogle Scholar
  29. Nowak, M. A. (2006). Evolutionary dynamics: Exploring the equations of life. Cambridge, MA: Belknap Press of Harvard University Press.Google Scholar
  30. Rosser, J. B. (2000). From catastrophe to chaos: A general theory of economic discontinuities: Mathematics microeconomics and finance. New York: Springer.Google Scholar
  31. Rosser, J. B. (2007). The rise and fall of catastrophe theory applications in economics: Was the baby thrown out with the bathwater? Journal of Economic Dynamics and Control, 31(10), 3255–3280. doi: 10.1016/j.jedc.2006.09.013.CrossRefGoogle Scholar
  32. Saunders, P. T. (1980). An introduction to catastrophe theory. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  33. Schnettler, S. (2009). A structured overview of 50 years of small-world research. Social Networks, 31(3), 165–178. doi: 10.1016/j.socnet.2008.12.004.CrossRefGoogle Scholar
  34. Sewell, M. J. (1977). Elementary catastrophe theory. In F. Branin Jr. & K. Huseyin (Eds.), Problem analyses in science and engineering (pp. 391–426). New York: Academic Press.CrossRefGoogle Scholar
  35. Silverberg, G., & Lehnert, D. (1993). Long waves and ‘evolutionary chaos’ in a simple Schumpeterian model of embodied technical change. Structural Change and Economic Dynamics, 4(9), 9–37. doi: 10.1016/0954-349X(93)90003-3.CrossRefGoogle Scholar
  36. Silverberg, G., & Verspagen, B. (2005). A percolation model of innovation in complex technology spaces. Journal of Economic Dynamics and Control, 29(1—-2), 225–244. doi: 10.1016/j.jedc.2003.05.005.CrossRefGoogle Scholar
  37. Stephen, A. T., & Toubia, O. (2009). Explaining the power-law degree distribution in a social commerce network. Social Networks, 31(4), 262–270. doi: 10.1016/j.socnet.2009.07.002.CrossRefGoogle Scholar
  38. Thom, R. (1975). Structural stability and morphogenesis: an outline of a general theory of models. The Advanced Book Program, W. A: Benjamin, Reading, MA, USA, translated from French by D.H. Fowler.Google Scholar
  39. Vázquez, A. (2003). Growing network with local rules: Preferential attachment, clustering hierarchy, and degree correlations. Physical Review E, 67(056), 104. doi: 10.1103/PhysRevE.67.056104.Google Scholar
  40. Veblen, T. B. (1898). Why is economics not an evolutionary science? The Quarterly Journal of Economics, 12(4), 373–397.CrossRefGoogle Scholar
  41. Veblen, T. B. (2008 [1899]). Theory of the Leisure Class. Project Gutenberg, http://www.gutenberg.org/ebooks/833
  42. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ’small-world’ networks. Nature, 393(6684), 440–442. doi: 10.1038/30918.CrossRefGoogle Scholar
  43. Windrum, P. (2003). Unlocking a lock-in: Towards a model of technological succession. In P. P. Saviotti (Ed.), Applied evolutionary economics new empirical methods and simulation techniques. Cheltenham: Edward Elgar Publishing Inc.Google Scholar
  44. Woodcock, A., & Davis, M. (1978). Catastrophe theory: A revolutionary new way of understanding how things change. New York: Dutton.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institute for Institutional and Innovation Economics (IINO)University of BremenBremenGermany

Personalised recommendations