Advertisement

Bankruptcy Prediction Using Logit and Genetic Algorithm Models: A Comparative Analysis

  • Leila Bateni
  • Farshid Asghari
Article
  • 231 Downloads

Abstract

One of important subjects for business and financial institutions in recent decades is bankruptcy prediction. In this study, we predict bankruptcy using both logit and genetic algorithm (GA) prediction techniques under sanctions circumstances. This study also compares the performance of bankruptcy prediction models by identifying conditions under which a model performs better to examine the relative performance of models, GA was used to classify 174 bankrupt and non-bankrupt Iranian firms listed in Tehran stock exchange for the period 2006–2014. Genetic model achieved 95 and 93.5 % accuracy rates in training and test samples, respectively; while logit model achieved only 77 and 75 % accuracy rates in training and test samples, respectively. The results suggest that two models have the capability of predicting bankruptcy and GA model is more accurate than the logit model in this regard.

Keywords

Genetic algorithm Logit Bankruptcy Sanctions 

References

  1. Agarwal, V., & Taffler R. (2008). Comparing the performance of market-based and accounting-based bankruptcy prediction models. Journal of Banking & Finance, 32(8). doi: 10.1016/j.jbankfin.2007.07.014
  2. Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The Journal of Finance, 23(4), 589–609. doi: 10.2307/2978933.CrossRefGoogle Scholar
  3. Altman, E. I. (1993). Corporate financial distress and bankruptcy: A complete guide to predicting & avoiding distress and profiting from bankruptcy. New York: Wiley.Google Scholar
  4. Altman, E. I., et al. (1977). ZETATM analysis: A new model to identify bankruptcy risk of corporations. Journal of Banking & Finance, 1(1), 29–54. doi: 10.1016/0378-4266(77)90017-6.CrossRefGoogle Scholar
  5. Amiri, G. S. (2003). Financial ratios and financial distress of Iran-Tehran listed companies. Journal of Financial Studies, 15, 121–136.Google Scholar
  6. Back, B., et al. (1996). Neural networks and genetic algorithms for bankruptcy predictions. Expert Systems with Applications, 11(4), 407–413.CrossRefGoogle Scholar
  7. Beaver, W. H. (1966). Financial ratios as predictors of failure. Journal of Accounting Research, 4, 71–111. doi: 10.2307/2490171.CrossRefGoogle Scholar
  8. Beaver, W., et al. (2005). Have financial statements become less informative? Evidence from the ability of financial ratios to predict bankruptcy. Review of Accounting Studies, 10(1), 93–122. doi: 10.1007/s11142-004-6341-9.CrossRefGoogle Scholar
  9. Begley, J., et al. (1996). Bankruptcy classification errors in the 1980s: An empirical analysis of Altman’s and Ohlson’s models. Review of Accounting Studies, 1(4), 267–284. doi: 10.1007/BF00570833.CrossRefGoogle Scholar
  10. Boritz, J., & Kennedy, D. (1995). Effectiveness of neural networks types for prediction of business failure. Expert System with Application, 9, 503–512.CrossRefGoogle Scholar
  11. Chava, S., & Jarrow, R. A. (2004). Bankruptcy prediction with industry effects. Review of Finance, 8(4), 537–569. doi: 10.1007/s10679-004-6279-6.CrossRefGoogle Scholar
  12. Chen, W.-S., & Du, Y.-K. (2009). Using neural networks and data mining techniques for the financial distress prediction model. Expert Systems with Applications, 36(2), 4075–4086. doi: 10.1016/j.eswa.2008.03.020.CrossRefGoogle Scholar
  13. Colin, A. M. (1994). Genetic algorithms for financial modeling. In G. J. Deboeck (Ed.), Trading on the edge (pp. 148–173). New York: Wiley.Google Scholar
  14. Cybinski, P. (2001). Description, explanation, prediction—The evolution of bankruptcy. Managerial Finance, Patrington, 27(4), 29–46.CrossRefGoogle Scholar
  15. Deboeck, G. J. (1994). Using GAs to optimize a trading system. In G. J. Deboeck (Ed.), Trading on the edge (pp. 174–188). New York: Wiley.Google Scholar
  16. Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7, 179–188.CrossRefGoogle Scholar
  17. Garkaz, M., & Abdollahi, A., (2010). The investigation of possibility of the use of genetic algorithm in predicting companies’ bankruptcy. In Proceeding of the IEEE International Conference on Business Economic Research (pp. 282–285).Google Scholar
  18. Goldberg, D. (1989). Genetic algorithms in search, optimization and machine learning. Reading: Addison-Wesley.Google Scholar
  19. Ginoglou, D., Agorastos, K., & Hatzigagios, T. (2002). Prerdicting corporate failure of problematic firms in Greece with LPM logit probit and discriminant analysis models. Journal of Financial Management and Analysis, 15(1), 1–15.Google Scholar
  20. Grice, J., & Dugan, M. (2001). The limitations of bankruptcy prediction models: Some cautions for the researcher. Review of Quantitative Finance and Accounting, 17(2), 151–166. doi: 10.1016/S0148-2963(00)00126-0.CrossRefGoogle Scholar
  21. Grice, J. S., & Ingram, R. W. (2001). Tests of the generalizability of Altman’s bankruptcy model. Journal of Business Research, 54(1), 53.CrossRefGoogle Scholar
  22. Hauser, R., & Booth, D. (2011). CEO bonuses as studied by robust logistic regression. Journal of Data Science, 9, 293–310.Google Scholar
  23. Hekanaho, J. (1997) GA-based rule enhancement in concept learning. In Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining, Newport Beach, CA (pp. 183–186).Google Scholar
  24. Hensher, D. A., & Jones, S. (2007). Forecasting corporate bankruptcy: Optimizing the performance of the mixed logit model. Abacus, 43(3), 241–264. doi: 10.1111/j.1467-6281.2007.00228.x.CrossRefGoogle Scholar
  25. Hillegeist, S., et al. (2004). Assessing the probability of bankruptcy. Review of Accounting Studies, 9(1), 5–34. doi: 10.1023/B:RAST.0000013627.90884.b7.CrossRefGoogle Scholar
  26. Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor, MI: University of Michigan Press.Google Scholar
  27. Holmen, J. S. (1988). Using financial ratios to predict bankruptcy: An evaluation of classic models using recent evidence. Akron Business and Economic Review, 19(1), 52–64.Google Scholar
  28. Hosseini S. S. A. (2013). Iran’s economy accompanied by sanctions with emphasis on 2012 performance. Quarterly Journal of Fiscal and Economic Policies, 1(2), 5–20. http://www.qjfep.ir/browse.php?a_code=A-10-1-8&slc_lang=fa&sid=1.
  29. Hsieh, S.-J. (1993). A note on the optimal cutoff point in bankruptcy prediction models. Journal of Business Finance & Accounting, 20(3), 457–464. doi: 10.1111/j.1468-5957.1993.tb00268.x.CrossRefGoogle Scholar
  30. Jones, F. L. (1987). Current techniques in bankruptcy prediction. Journal of Accounting Literature, 6, 131–164.Google Scholar
  31. Katz, S., et al. (1985). Stock market behavior around bankruptcy model distress and recovery predictions. Financial Analysts Journal, 41(1), 70–74. doi: 10.2469/faj.v41.n1.70.CrossRefGoogle Scholar
  32. Lee, K., Booth, D., & Alam, P. (2005). A comparison of supervised and unsupervised neural networks in predicting bankruptcy in Korean firms. Expert Systems with Applications, 29, 1–16.CrossRefGoogle Scholar
  33. Mahfoud, S., & Mani, G. (1995). Genetic algorithms for predicting individual stock performance. In Proceedings of the Third International Conference on Artificial Intelligence Applications on Wall Street (pp. 174–181).Google Scholar
  34. McKee, T. E. (2003). Rough sets bankruptcy prediction models versus auditor signaling rates. Journal of Forecasting, 22(8), 569–586. doi: 10.1002/for.875.CrossRefGoogle Scholar
  35. McKee, T. E., & Lensberg, T. (2002). Genetic programming and rough sets: A hybrid approach to bankruptcy classification. European Journal of Operational Research, 138, 436–451.CrossRefGoogle Scholar
  36. Mensah, Y. M. (1984). An examination of the stationarity of multivariate bankruptcy prediction models: A methodological study. Journal of Accounting Research, 22(1), 380–395. doi: 10.2307/2490719.CrossRefGoogle Scholar
  37. Mehrazin, A. (2013). Radial basis function in artificial neural network for prediction of bankruptcy. International Business Researh, 6(8), 121–129. doi: 10.5539/ibr.v6n8p121.Google Scholar
  38. Nikbakht, M. R., & Sharifi, M. (2011). Financial bankruptcy prediction of corporations in stock exchanges by using artificial neural network. Journal of Industrial Management, 2(4), 163–180.Google Scholar
  39. Odom, M., & Sharda, R. (1990). A neural network model for bankruptcy prediction. Proceedings of the IEEE International Conference on Neural Networks, 2, 163–168.Google Scholar
  40. Ohlson, J. A. (1980). Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research, 18(1), 109–131. doi: 10.2307/2490395.CrossRefGoogle Scholar
  41. O’Leary, D. E. (1998). Using neural networks to predict corporate failure. International Journal of Intelligent Systems in Accounting Finance and Management, 7(3), 187–197.CrossRefGoogle Scholar
  42. Pirayesh, R., Mansori, A., & Amjadiyan, S. (2009). Design cash flow-based mathematical models to predict bankruptcy companies accepted in Tehran Stock. Journal of Capital Development, 4, 73–94.Google Scholar
  43. Raie, R., & Falahpour, S. (2004). Predicting companies’ financial distress by artificial neural networks. Journal of Financial Studies, 17, 39–69.Google Scholar
  44. Rashidi, Z., & Hoseini, M. (2013). Bankruptcy prediction of listed corporations in Tehran stock exchange using data mining techniques. International Journal of Advanced Research in Computer Science and Software Engineering, 3, 928–936.Google Scholar
  45. Ravi, K. P., & Ravi, V. (2007). Bankruptcy prediction in banks and firms via statistical and intelligent techniques—A review. European Journal of Operational Research, 180(1), 1–28. doi: 10.1016/j.ejor.2006.08.043.CrossRefGoogle Scholar
  46. Sarkar, S., & Sriram, R. S. (2001). Bayesian models for early warning of bank failures. Management Science, 47(11), 1457–1475. doi: 10.1287/mnsc.47.11.1457.10253.CrossRefGoogle Scholar
  47. Sexton, R. S., Sriram, R. S., & Etheridge, H. (2003). Improving decision effectiveness of artificial neural networks: A modified genetic algorithm approach. Decision Sciences, 34(3), 421–442.CrossRefGoogle Scholar
  48. Shin, K. S., & Han, I. (1999). Case-based reasoning supported by genetic algorithms for corporate bond rating. Expert Systems with Applications, 16(2), 85–95.CrossRefGoogle Scholar
  49. Shin, K.-S., & Lee, Y.-J. (2002). A genetic algorithm application in bankruptcy prediction modeling. Expert Systems with Applications, 23(3), 321–328.CrossRefGoogle Scholar
  50. Sikora, R., & Shaw, M. J. (1994). A double-layered learning approach to acquiring rules for classification: Integrating genetic algorithms with similarity-based learning. ORSA Journal on Computing, 6(2), 174–187.CrossRefGoogle Scholar
  51. Sivanandam, S. N., & Deepa, S. N. (2008). Introduction to genetic algorithms. New York: Springer.Google Scholar
  52. Shumway, T. (2001). Forecasting bankruptcy more accurately: A simple hazard model. Journal of Business, 74, 101–124. doi: 10.1086/209665.CrossRefGoogle Scholar
  53. Sun, L., & Shenoy, P. P. (2007). Using Bayesian networks for bankruptcy prediction: Some methodological issues. European Journal of Operational Research, 180(2), 738–753. doi: 10.1016/j.ejor.2006.04.019.CrossRefGoogle Scholar
  54. Tam, K. Y. (1991). Neural network models and the prediction of bank bankruptcy. Omega, 19(5), 429–445. doi: 10.1016/0305-0483(91)90060-7.CrossRefGoogle Scholar
  55. Varetto, F. (1998). Genetic algorithms applications in the analysis of insolvency risk. Journal of Banking & Finance, 22, 1421–1439. doi: 10.1016/S0378-4266(98)00059-4.CrossRefGoogle Scholar
  56. West, R. C. (1985). A factor-analytic approach to bank condition. Journal of Banking & Finance, 9(2), 253–266. doi: 10.1016/0378-4266(85)90021-4.CrossRefGoogle Scholar
  57. Whitaker, R. (1999). The early stages of financial distress. Journal of Economics and Finance, 23(2), 123–132. doi: 10.1007/BF02745946.CrossRefGoogle Scholar
  58. Wilson, R. L., & Sharda, R. (1994). Bankruptcy prediction using neural networks. Decision Support Systems, 11(5), 545–557. doi: 10.1016/0167-9236(94)90024-8.CrossRefGoogle Scholar
  59. Zavgren, C. (1983). The prediction of corporate failure: The state of the art. Journal of Accounting Literature, 2(1), 1–38.Google Scholar
  60. Zhang, G., Hu, M. Y., Patuwo, B. E., & Indro, D. C. (1999). Artificial neural networks in bankruptcy classification general framework and cross-validation analysis. European Journal of Operational Research, 116, 16–32. doi: 10.1016/S0377-2217(98)00051-4.CrossRefGoogle Scholar
  61. Zhang, D., & Zhou, L. (2004). Discovering golden nuggets: Data mining in financial application. IEEE Transactions on Systems, Man, and Cybernetics—Part C: Applications and Reviews, 34(4), 513–522.CrossRefGoogle Scholar
  62. Zmijewski, M. E. (1984). Methodological issues related to the estimation of financial distress prediction models. Journal of Accounting Research, 22, 59–82. doi: 10.2307/2490859.CrossRefGoogle Scholar
  63. Zopounidis, C., & Dimitras, A. (1998). Multicriteria decision aid methods for the prediction of business failure. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Science and Research Branch, Department of Management and EconomicsIslamic Azad UniversityTehranIran

Personalised recommendations