Computational Economics

, Volume 48, Issue 3, pp 535–546 | Cite as

A Note on Julia and MPI, with Code Examples

  • Michael Creel


This note explains how MPI may be used with the Julia programming language. An example of a simple Monte Carlo study is presented, with code. The code is intended to serve as a general purpose template for more relevant applications. A second example shows how the template code may be adapted to perform a Monte Carlo study of the properties of an approximate Bayesian computing estimator of actual research interest. All of the code is available at


Julia programming language Message passing interface  Monte Carlo Approximate Bayesian computing 


  1. Aruoba, S.B., & Fernández Villaverde, J. (2014). A comparison of programming languages in economics.
  2. Creel, M. (2005). User-friendly parallel computations with econometric examples. Computational Economics, 26, 107–128.CrossRefGoogle Scholar
  3. Creel, M., & Goffe, W. L. (2008). Multi-core CPUs, clusters, and grid computing: A tutorial. Computational Economics, 32, 353–382.CrossRefGoogle Scholar
  4. Creel, M., & Kristensen, D. (2012). Estimation of dynamic latent variable models using simulated nonparametric moments. Econometrics Journal, 15, 490–515.CrossRefGoogle Scholar
  5. Creel, M., & Kristensen, D. (2013). Indirect likelihood inference (revised), UFAE and IAE Working Papers.
  6. Creel, M., & Kristensen, D. (2015a). On selection of statistics for approximate Bayesian computing (or the method of simulated moments), Computational Statistics & Data Analysis. doi: 10.1016/j.csda.2015.05.005.
  7. Creel, M., & Kristensen, D. (2015b). ABC of SV: Limited information likelihood inference in stochastic volatility jump-diffusion models. Journal of Empirical Finance, 31, 85–108. doi: 10.1016/j.jempfin.2015.01.002.
  8. Doornik, J. A., Hendry, D. F., & Shephard, N. (2006). Parallel computation in econometrics: A simplified approach. In E. Kontoghiorgies (Ed.), Handbook on parallel computing and statistics (pp. 449–476). London: Chapman & Hall/ CRC.Google Scholar
  9. Gallant, A.R., & Tauchen, G. (2013). EMM: a program for efficient method of moments estimation, v2.6, User’s Guide.
  10. Racine, J. (2002). Parallel distributed kernel estimation. Computational Statistics & Data Analysis, 40, 293–302.CrossRefGoogle Scholar
  11. Sargent, T., & Stachurski, J. (2014). Quantitative economics.
  12. Setzler, B. (2014). Julia/Economics.
  13. Swann, C. A. (2002). Maximum likelihood estimation using parallel computing: An introduction to MPI. Computational Economics, 19, 145–178.CrossRefGoogle Scholar
  14. Villemot, S. (2014). Julia introduction at CEF 2014. .

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Universitat Autònoma de BarcelonaBarcelona Graduate School of Economics, and MOVEBarcelonaSpain

Personalised recommendations