Computational Economics

, Volume 46, Issue 1, pp 15–34 | Cite as

A Dynamic Discrete/Continuous Choice Model for Forward-Looking Agents Owning One or More Vehicles

Article

Abstract

During the last \(40\) years, a large number of studies have analyzed car holding and use behavior. Most of these ignore the dynamics of household and driver needs that very likely drive such decisions. Our work builds up on a disaggregate (compensatory) approach using revealed choices to address these dynamics. We develop a dynamic discrete/continuous choice model of car holding duration for forward-looking agents. We estimate this model using French panel survey data. Our findings indicate that a household’s time preference is a crucial element in car use and holding decisions.

Keywords

Forward-looking agents Discrete/continuous choice modeling Transportation demand 

JEL Classification

C35 C41 D12 

Notes

Acknowledgments

We gratefully thank Maria Kuecken, University of Paris 1 Panthéon-Sorbonne/Paris School of Economics, for her remarks and suggestions.

References

  1. Adda, J., & Cooper, R. (2000). Balladurette and juppette: a discrete analysis of scrapping subsidies. Journal of Political Economy, 108(4), 778–806.CrossRefGoogle Scholar
  2. Aguirregabiria, V., & Mira, P. (2010). Dynamic discrete choice structural models: a survey. Journal of Econometrics, 156(1), 38–67.CrossRefGoogle Scholar
  3. Baron, J.-F. (2002). La consommation automobile depuis quarante ans. INSEE Première, 844, 1–4.Google Scholar
  4. Bellman, R. (1957). Dynamic programming. Princeton: Princeton University Press.Google Scholar
  5. Bento, A. M., Goulder, L. H., Jacobsen, M. P., & von Haefen, R. H. (2009). Distributional and efficiency impacts of increased us gasoline taxes. American Economic Review, 99(3), 667–699.CrossRefGoogle Scholar
  6. Berkovec, J., & Rust, J. (1985). A nested logit model of automobile holdings for one vehicle households. Transportation Research Part B, 19(4), 275–285.CrossRefGoogle Scholar
  7. Bertsekas, D. P. (2000). Dynamic programming and optimal control (2nd ed.). Belmont: Athena Scientific.Google Scholar
  8. Bhat, C. (1994). Imputing a continuous income variable from grouped and missing income observartions. Economics Letters, 46(4), 311–320.CrossRefGoogle Scholar
  9. Bhat, C., & Sen, S. (2006). Household vehicle type holdings and usage: an application of the multiple discrete-continuous extreme value (mdcev) model. Transportation Research Part B, 40(1), 35–53.CrossRefGoogle Scholar
  10. CCFA. (2006). Analyse et statistiques. Comité des Constructeurs Français Automobiles.Google Scholar
  11. de Jong, G. (1990). An indirect utility model of car ownership and private car use. European Economic Review, 34, 971–985.CrossRefGoogle Scholar
  12. de Jong, G. (1996). A disaggregate model system of vehicle holding duration, type choice and use. Transportation Research Part B, 30(4), 263–276.CrossRefGoogle Scholar
  13. de Jong, G., & Gunn, H. (2001). Recent evidence on car cost and time elasticities of travel demand in europe. Journal of Transport Economics and Policy, 35, 137–160.Google Scholar
  14. de Jong, G., & Kitamura, R. (2009). A review of household dynamic vehicle ownership models: holdings models versus transactions models. Transportation, 36, 733–743.CrossRefGoogle Scholar
  15. Gilbert, C. (1992). A duration model of automobile ownership. Transportation Research Part B, 26, 97–114.CrossRefGoogle Scholar
  16. Goodwin, P. (1992). A review of new demand elasticities with special reference to short and long run effects of price changes. Journal of Transport Economics and Policy, 26, 155–163.Google Scholar
  17. Graham, D., & Glaister, S. (2002). The demand for automobile fuel: A survey of elasticities. Journal of Transport Economics and Policy, 36, 1–26.Google Scholar
  18. Graham, D., & Glaister, S. (2004). Road traffic demand elasticity estimates: A review. Transport Reviews, 24(3), 261–274.CrossRefGoogle Scholar
  19. Hensher, D. A., Milthorpe, F. W., & Smith, N. C. (1990). The demand for vehicule use in the urban household sector. Journal of Transport Economics and Policy, 24(2), 119–137.Google Scholar
  20. Hocherman, I., Prashker, J. N., & Ben-Akiva, M. (1983). Estimation and use of dynamic transaction models of automobile ownership. Transportation Research Records, 944, 134–141.Google Scholar
  21. Julliard, M. (2007). Le budget automobile des ménages s’adapte aux prix des carburants. INSEE Première, 1159, 1–4.Google Scholar
  22. Magnac, T., & Thesmar, D. (2002). Identifying dynamic discrete decision processes. Econometrica, 70, 801–816.CrossRefGoogle Scholar
  23. Mannering, F. (1983a). Dynamic econometric models of car ownership and utilization. PhD Thesis, Massachusetts Institute of TechnologyGoogle Scholar
  24. Mannering, F. (1983b). An econometric analysis of vehicle use in multivehicle households. Transportation Research Part A, 17(3), 183–189.CrossRefGoogle Scholar
  25. Rust, J. (1987). Optimal replacement of GMC bus engines: An empirical model of Harold Zurcher. Econometrica, 55(5), 999–1033.CrossRefGoogle Scholar
  26. Rust, J. (1996). Numerical dynamic programming in economics. In H. M. Amman, D. A. Kendrick, & J. Rust (Eds.), Handbook of computational economics (Vol. 1, Chap. 14, , pp 619–729). Amsterdam: Elsevier.Google Scholar
  27. Stewart, M. (1983). On least squares estimation when the dependent variable is grouped. Review of Economic Studies, 50, 141–149.CrossRefGoogle Scholar
  28. Terza, J. (1985). Ordered probit: A generalization. Communications in Statistics? A Theory and Methods, 14, 1–11.CrossRefGoogle Scholar
  29. Train, K. (1986). Qualitative choice analysis: Theory, econometrics, and an application to automobile demand. Cambridge: MIT Press.Google Scholar
  30. Turrentine, T. S., & Kurani, K. S. (2007). Car buyers and fuel economy. Energy Policy, 35, 1213–1223.CrossRefGoogle Scholar
  31. Xu, R. (2011). Dynamic discrete choice models for car ownership modeling. PhD Thesis, Department of Civil and Environmental Engineering, University of Maryland.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Future Urban Mobility (FM)Singapore–MIT Alliance for Research and Technology (SMART)Singapore Singapore
  2. 2.Dynamiques Economiques et Sociales des Transports (DEST), Institut Français des Sciences et Technologies des Transportsde l’Aménagement et des Réseaux (IFSTTAR), 14–20 Boulevard NewtonMarne la Vallée Cedex 2France
  3. 3.Université Paris-Est, Institut Français des Sciences et Technologies des Transports, de l’Aménagement et des RéseauxMarne la Vallée Cedex 2France

Personalised recommendations