Advertisement

Computational Economics

, Volume 46, Issue 2, pp 325–357 | Cite as

Data Checking and Econometric Software Development: A Technique of Traceability by Fictive Data Encoding

  • Rodolphe Buda
Article

Abstract

In this paper, we have exposed the data checking problem in the context of the econometric software development. We have based our presentation on the development of our SIMUL multidimensional econometric software. We have shown that this problem is particularly important when one develops multi-dimensional econometric software. Then, we have briefly recalled the principle of the main arithmetical and managerial techniques available to deal with this problem. Finally, we have presented the data checking procedures we have conceived based on a fictive data encoding technique.

Keywords

Data bank Data location checking Data encoding Econometric software 

JEL Classification

C81 C82 C87 

Notes

Acknowledgments

I would like to thanks Professor Hans Amman for his advises and I would be obviously responsible for any remaining error.

References

  1. Adelman, I. (2004). My life philosophy. In M. Szenberg & L. Ramrattan (Eds.), Reflections of eminent economist (pp. 8–25). Cheltenham: Edward Elgar Publishing.Google Scholar
  2. Almon, C. (1991). The inforum approach to interindustry modeling. Economic Systems Research, 3(1), 1–7.CrossRefGoogle Scholar
  3. Amman, H.M., Kendrick, D.A. & Rust, J. (Eds.), (1996). Handbook of computational economics—Vol. 1. Series in handbook in economics. Amsterdam: North-Holland, 13, 827.Google Scholar
  4. Arrivault, G., Bergera, C., Cézard, M. & Roth, N. (1995). Les chiffrements automatiques dans l’enquête emploi. Actes des journées de méthodologie statistique, 17–18(juin), 1992.Google Scholar
  5. Artus, P., Bourney, J., Morin, P., Pacaud, A., Peyroux, C., Sterdyniak, H., et al. (1981). METRIC—Une modélisation de l’économie française. Paris: INSEE. p. 532.Google Scholar
  6. Backus, J.W., H. Herrick, H. & Ziller, I. (1954). Preliminary report: Specifications for the IBM Mathematical FORmula TRANSlating System, FORTRAN, Programming Research Group, Applied Science Division, International Business Machines Corporation, November 10, p. 29.Google Scholar
  7. Baiocchi, G. (2007). Reproducible research in computational economics: guidelines, integrated approaches, and open source software. Computational Economics, 30(1), 19–40.CrossRefGoogle Scholar
  8. Boldt, D., & McDonald, B. (1988). Review: aremos data management and econometric software—version 1.0. Economic Inquiry, 26(2), 365–367.CrossRefGoogle Scholar
  9. Brillet, J. L. (1989). Econometric modeling on microcomputers: a review of major software packages. Journal of Applied Econometrics, 4(1), 73–92.CrossRefGoogle Scholar
  10. Brillet, J. L. (1994). Modélisation économétrique—Principes et techniques. Economie et statistiques avancées. Paris: Economica.Google Scholar
  11. Bruneau, E. & Rivière, P. (1997). Recherches textuelles, codage automatique, codage assisté. Courrier des statistiques, 81–82(juin), 41–47.Google Scholar
  12. Buda, R. (1999). SIMUL—Manuel de références et guide d’utilisation version 3.1, Mimeo GAMA, U. Paris 10, 57. http://tel.archives-ouvertes.fr/docs/00/67/55/11/ANNEX/SIMUL_3_1_Manuel_d_utilisation.pdf.
  13. Buda, R. (2001). Les algorithmes de la modélisation - une présentation critique pour la modélisation économique, Document de travail MODEM 2001–44, U. Paris 10, juil, 97. http://mpra.ub.uni-muenchen.de/3926/.
  14. Buda, R. (2003). Une analyse qualitative de l’offre statistique de l’INSEE: travaux préparatoires pour la construction d’une banque de données d’emploi régional, working paper MODEM, 3(22), 46. http://mpra.ub.uni-muenchen.de/4017/.
  15. Buda, R. (2005). Relevance of an accuracy control module implementation into an economic modelling software, Mimeo GAMA, Univ. de Paris 10, juil, 20. http://mpra.ub.uni-muenchen.de/36520/.
  16. Buda, R. (2008a). Two dimensional aggregation procedure: An alternative to the matrix algebraic algorithm. Computational Economics, 31(4), 397–408. http://www.springerlink.com/content/r256923113821068/.
  17. Buda, R. (2008b). Estimation de l’emploi régional et sectoriel salarié français: Application à l’année 2006, Mimeo GAMA, Univ. de Paris 10 juil, 30. http://mpra.ub.uni-muenchen.de/34881/.
  18. Buda, R. (2008c). Contrôle des systèmes de modélisation: un exemple de codage et de traçabilité des données, Mimeo GAMA, Univ. de Paris 10, 15. http://mpra.ub.uni-muenchen.de/47209/1/MPRA_paper_47209.pdf.
  19. Buda, R. (2010a). Estimations de l’emploi régional salarié français détaillé au 31.12.2007 et agrégé au 31.12.2008, Mimeo GAMA, Univ. de Paris 10 juil, 58. http://mpra.ub.uni-muenchen.de/34884/.
  20. Buda, R. (2010b). Modélisation multi-dimensionnelle et analyse multi-régionale de l’économie française, Thèse de doctorat ès Sciences économiques, U. Paris-Ouest Nanterre-La Défense, p. 654. http://tel.archives-ouvertes.fr/docs/00/67/55/11/PDF/ThA_se_r_buda_corrigA_e_15-02-11_pdf.
  21. Buda, R. (2011). SIMUL3.2—Quick user’s manual, Nanterre, Mimeo GAMA, U. Paris 10, p. 38. http://dge.repec.org/codes/buda/SIMUL_3.2_07-01-11.rar.
  22. Buda, R. (2013). SIMUL 3.2: An econometric tool for multidimensional modelling. Computational Economics, 41(4), 517–524. http://www.springerlink.com/content/ww22950646u54375/.
  23. Bussery, H., Courbis, R., & Seibel, C. (1975). Le modèle FIFI—Tome 2 - Les équations, Paris.Google Scholar
  24. Cribari-Neto, F. (1999). C for econometricians. Computational Economics, 14(1–2), 135–149.Google Scholar
  25. Codd, E. F. (1970). A relational model of data for large shared data banks. Communications of the ACM, 13(6), 377–387.CrossRefGoogle Scholar
  26. Courbis, R. (1983a). Les travaux du gama de modélisation et comptabilité régionales: un bilan rapide. Prévision et analyse économique (Cahiers du GAMA), 4(4), 7–12.Google Scholar
  27. Courbis, R. (1983b). Multiregional modeling and statistical information. In P. Nijkamp & P. Rietveld (Eds.), Information systems for integrated regional planning. Contribution to economic analysis (pp. 193–201). Amsterdam: North-Holland.Google Scholar
  28. Courbis, R. (Ed.), (1979). Modèles régionaux et modèles régionaux-nationaux. Travaux du GAMA (p. 370). Paris: Cujas.Google Scholar
  29. Courbis, R., (Ed.). (1981). Commerce international et modèles multirégionaux. Modèles et macroéconomie appliquée (p. 3, 378). Coll: Economica.Google Scholar
  30. Courbis, R., Fonteneau, A., Le Van, C., & Voisin, P. (1980). Le modèle MOGLI. Prévision et analyse économique—Cahiers du GAMA, 1(2–3), 317.Google Scholar
  31. Courbis, R., & Pommier, C. (1979). Construction d’un tableau déchanges inter-industriels et inter-régionaux de l’économie française., Modèles et macroéconomie appliquée Coll: Economica. 519 p.Google Scholar
  32. Courbis, R. & Salmon, P. (1986). Le modèle PROTEE, un modèle trimestriel de l’économie française, Ile Séminaire Franco-Polonais, Nanterre, 29–30 mai 1986, Note GAMA, 544.Google Scholar
  33. Courbis, R., & Sok, H. (1983). Le modèle anais, un modèle inter-sectoriel détaillé de l’économie française. Prévision et analyse économique, 4(2), 73–95.Google Scholar
  34. Cummins, C., & Hall, B.H. (1986). Time series processor version 4.0/4.1 programmer’s manual. Stanford, CA: TSP International.Google Scholar
  35. Don, H., & Verbruggen, J. (2006). Models and methods for economic policy—60 years of evolution at CPB. CPB discussion papers, 55, p. 42.Google Scholar
  36. Dutierez, M. C. (1990). Une nouvelle chaîne de traitement. Courrier des statistiques, 53, 27–35.Google Scholar
  37. Eisner, M. (1972). Troll/1—An interactive computer system for econometric research. Annals of Economic and Social Measurement, 1, 95–96.Google Scholar
  38. Equipe, D.M.S. (1987). DMS 4—modèle dynamique multi-sectoriel C, Comptes et planification (p. 350). Paris: INSEE. 139.Google Scholar
  39. Equipe, M. I. M. O. S. A. (1990). Mimosa, une modélisation de léconomie mondiale. Observations et diagnostics économiques, 30, 137–197.Google Scholar
  40. European Committee for Banking Standards. (2003). IBAN: International bank account number. ECBS: Bruxelles.Google Scholar
  41. Faubry, E., Moncomble, J. E., Vidal de la Blache, O., & Zagamé, P. (1984). Le modèle hermès-france. Economie & prévision, 5, 3–29.CrossRefGoogle Scholar
  42. Fonteneau, A. (1983). Le modèle ofce-annuel. Observations et diagnostics économiques, 5, 53–79.Google Scholar
  43. Garnick, D.H. (1980). The regional statistics system. In F.G. Adams & N.J. Glickman (Eds.), Modeling the multiregional economic system (pp. 25–47). Lexington (Mass.): Lexington Books.Google Scholar
  44. Goldberger, A. S. (2004). Econometric computing by hand. Journal of Economic and Social Measurement, 29(1–3), 115–117.Google Scholar
  45. Gotel, O.C.Z. & Finkelstein, A.W.C. (1994). An analysis of the requirements traceability problem. Proceedings of the first international conference on requirements engineering. Colorado Springs: IEEE Computer Society Press. 12–22 April 1994.Google Scholar
  46. Gouet, M. J. (1984). L’organisation du traitement informatique dans les services régionaux et départementaux de statistique agricole. Courrier des statistiques, 32, 16–22.Google Scholar
  47. Hamming, R. W. (1950). Error detecting and error correcting codes. The Bell System Technical Journal, April, 26(2), 147–160.CrossRefGoogle Scholar
  48. Hendry, D. F. (1993). Econometrics: Alchemy or science?: Essays in econometric methodology. Oxford: Oxford University Press. p. 560.Google Scholar
  49. Herbert, R. D. (2004). Modelling programming languages—appropriate tools? Journal of Economic and Social Measurement, 29(1/3), 321–337.Google Scholar
  50. Hildreth, C. & Lu, J. (1960). Demand relations with autocorrelated disturbances. Technical bulletin Michigan State University Agriculture Experimental Station, 276.Google Scholar
  51. Howrey, E. P. (1978). The use of preliminary data in econometric forecasting. Review of Economics and Statistics, 60(2), 193–200.CrossRefGoogle Scholar
  52. Hsu, H. P. (2002). Analog and digital communications. Schaum’s outlines. New York: McGraw Hill. 336 p.Google Scholar
  53. Huang, J.C. (1975). An approach to program testing. Computing Surveys, 7(3), 20.Google Scholar
  54. Huang, J. C. (2009). Software error detection through testing and analysis. New York: Wiley. p. 259.CrossRefGoogle Scholar
  55. Inmon, W. H. (1981). Effective data base design., Series in data processing management Englewood Cliffs: Prentice-Hall.Google Scholar
  56. IPECODE. (1983). Icare: modèle conjoncturel de l’économie française, Revue de l’Ipecode, 1, mars, pp. 15–39.Google Scholar
  57. Kendrick, D.A. (1982). A relational database for the U.S. economy. In C.P. Kindelberger & G. du Tella (Eds.), Economics in the long view: Essays in honor of W.W. Rostow, Vol. 3. Application and Cases (pp. 63–82). London: Macmillan Press.Google Scholar
  58. Kendrick, D. A., & Amman, H. M. (1999). Programming languages in economics. Computational Economics, 14(1–2), 151–181.CrossRefGoogle Scholar
  59. Kimball, R. (1996). The data warehouse toolkit: Practical techniques for building dimensional data warehouses. New York: Wiley. p. 374.Google Scholar
  60. Klein, L. R. (1950). Economic fluctuations in the United States. New York: Wiley. p. 174.Google Scholar
  61. Klein, L. R., & Goldberger, A. S. (1955). An econometric model of United States 1929–1952. Amsterdam: North-Holland. p. 165.Google Scholar
  62. Klein, L.R. & Young, R.M. (1980). An introduction to econometric forecasting and forecasting models (p. 155). Lexington (Mass.): Lexington Books.Google Scholar
  63. Koenkera, R., & Zeileis, A. (2009). On reproducible econometric research. Journal of Applied Econometrics, 24(5), 833–847.CrossRefGoogle Scholar
  64. Koepp, F. (1982). Chapitre 11—La conception informatique de PROPAGE. Equipe PROPAGE, Le modèle PROPAGE—modèle détaillé de l’appareil productif français. Comptes et planification (pp. 233–239). Coll: INSEE.Google Scholar
  65. Korosi, G., Matyas, L., & Szekely, I. (1993). Comparative review of some econometric software packages. Journal of Economic Surveys, 7, 105–118.CrossRefGoogle Scholar
  66. Lahr, M. L., & de Mesnard, (2004). Biproportional techniques in input–output analysis: table updating and structural analysis. Economic System Research, 16(2), 115–134.CrossRefGoogle Scholar
  67. Leontief, W.W. (1948). Computational problems arising in connection with economic analysis of industrial relationships. Proceedings of a symposium on large-scale digital calculating machinery, Cambridge (Mass.): Harvard University Press.Google Scholar
  68. Lorigny, J. (1981). Du nouveau dans l’automatisation du chiffrement à l’insee. Courrier des statistiques, 20, 34–36.Google Scholar
  69. Lorigny, J. (1988). QUID, une méthode générale de chiffrement automatique. Techniques d’enquête, déc., INSEE.Google Scholar
  70. Lyberg, L. & Dean, P. (1992). Automatic coding of survey responses: An international review. Conférence des statisticiens européens. Work session on data editing. Washington, March.Google Scholar
  71. Mackie-Mason, J. (1992). Econometric software: A user’s view. Journal of Economic Perspectives, 6(4), 165–187.CrossRefGoogle Scholar
  72. Maddala, G. S. (1977). Econometrics. New York: McGraw hill. p. 516.Google Scholar
  73. McCracken, M. C. (1966). DATABANK system: User’s manual. Ottawa: Economic Council of Canada.Google Scholar
  74. McCracken, M. C. (1967a). A computer system for econometric research. Social Science Information, 5, 151–158.CrossRefGoogle Scholar
  75. McCracken, M.C. (1967b). Data administration in an information system. Conference on government information systems. Ottawa: Economic Council of Canada.Google Scholar
  76. McCracken, M. C., & Sonnen, C. A. (1973). Simulation system for econometric models. Ottawa: Informetrica.Google Scholar
  77. McCullough, B. D. (1998). Assessing the reliability of statistical software: Part i. The American Statistician, 52(4), 358–366.Google Scholar
  78. McCullough, B. D. (1999). Econometric software reliability: Eviews, limdep, shazam and tsp. Journal of Applied Econometrics, 14, 191–202.CrossRefGoogle Scholar
  79. McCullough, B. D. (2004). Wilkinson’s tests and econometric software. Journal of Economic and Social Measurement, 29, 261–270.Google Scholar
  80. McCullough, B. D. (2009). The accuracy of econometric software. In D. A. Besley & E. J. Kontoghiorghes (Eds.), Handbook of computational econometrics (pp. 55–79). Chichester: Wiley.CrossRefGoogle Scholar
  81. Meade, J.A., & Stone, R.N. (1941). The construction of tables of national income, expenditure, savings and investment. Economic Journal, 51, 216–231.Google Scholar
  82. Meadow, C. T. (1976). Applied data management. Information science. New York: Wiley. p. 310.Google Scholar
  83. Meyer, R., & Rivière, P. (1997). SICORE, un outil et une méthode pour le chiffrement automatique à l’INSEE. Document de travail INSEE. Paris: INSEE. p. 14.Google Scholar
  84. Moon, T. K. (2005). Error correction coding: Mathematical methods and algorithms. New York: Wiley. p. 800.CrossRefGoogle Scholar
  85. Morgan, M.S. (1990). The history of econometric ideas: Historical perspectives on modern economics (p. 296). Cambridge: Cambridge University Press.Google Scholar
  86. Morgenstern, O. (1960). On the accuracy of the economic observations. Princeton, New Jersey: Princeton University Press. p. 322.Google Scholar
  87. Nepomiastchy, P., & Rechenmann, F. (1983). The equation writing external language of the MODULECO software. Journal of Economic Dynamics and Control, 5(1), 37–57.Google Scholar
  88. Nerlove, M. (2004). Programming languages: A short history for economics. Journal of Economic and Social Measurement, 29(1–3), 189–203.Google Scholar
  89. Nguyen, G.D. (2005). Error-detection codes: algorithms and fast implementation. IEEE Transactions on Computers, 54(1), 11.Google Scholar
  90. Nielsen, S. S. (Ed.). (2002). Programming languages and systems in computational economics and finance. Boston: Kluwer Academic Publishers. 460.Google Scholar
  91. Nijkamp, P., Rietveld, P., & (Eds.), (1984). Information systems for integrated regional planning. Contributions to Economic Analysis (p. 458). Amsterdam: North-Holland, 149.Google Scholar
  92. Ooms, M. (2008). Trends in applied econometrics software development 1985–2008, an analysis of journal of applied econometrics research articles, software reviews, data and code. Working papers VU Univ. Amsterdam, Faculty of Economics, Business Administration and Econometrics, p. 21, 24.Google Scholar
  93. Peterson, W. (1987). Computer software for a large econometric model. In T. Barker & W. Peterson (Eds.), The Cambridge multisectoral dynamic model of the British economy (pp. 105–121). Cambridge: Cambridge University Press.Google Scholar
  94. Pichat, M., & Vignes, J. (1993). Ingéniérie du contrôle de la précision des calculs sur ordinateurs, Paris, Technip. Coll: Informatique. 233 p.Google Scholar
  95. Pommier, C. (1983). La consommation des ménages résidents par région de 1965 à 1980. Prévision et analyse économique (Cahiers du GAMA), 4(4), 87–154.Google Scholar
  96. Qin, D. (1997). The formation of econometrics: A historical perspective. Oxford: Oxford University Press. p. 228.CrossRefGoogle Scholar
  97. Renfro, C. G. (1977). The Kentucky economic information system. Kentucky Economy: Review and Perspective, 1(2), 2–8.Google Scholar
  98. Renfro, C.G. (1979). On the development of a comprehensive public data base for aggregate state and local economic data. Public data use, 7(5–6), 10.Google Scholar
  99. Renfro, C. G. (1980). Economic database systems: Some reflections on the state of the art. Review of Public Data Use, 8, 121–139.Google Scholar
  100. Renfro, C. G. (1997). Economic database systems: Further reflections on the state of the art. Journal of Economic and Social Measurement, 23, 43–85.Google Scholar
  101. Renfro, C.G. (1998). Multidimensional data for regional analysis: A consideration of software requirements. In paper presented at the regional economic indicator models workshop. 8–10 June, Universidade do Minho, Braga, Portugal, p. 20.Google Scholar
  102. Renfro, C.G. (2001). Econometric software. In D.A. Besley & E.J. kontoghiorghes (Eds.), Handbook of computational econometrics (pp. 1–57). New York: Wiley.Google Scholar
  103. Renfro, C. G. (2003). A compendium of existing econometric software packages. Journal of Economic and Social Measurement, 29, 359–409.Google Scholar
  104. Renfro, C. G. (2004). Econometric software: The first fifty years in perspective. Journal of Economic and Social Measurement, 29, 1–70.Google Scholar
  105. Renfro, C. G. (2006). Economic and social measurement, research, methodology, and computational technologies: An editorial. Journal of Economic and Social Measurement, 31, 1–32.Google Scholar
  106. Renfro, C.G. (2009a). The practice of econometric theory: An examination of the characteristics of econometric computation. Advanced Studies in Theoretical and Applied Econometrics (p. 311). Dortrecht: Springer, 44.Google Scholar
  107. Renfro, C.G. (2009b). Building and using a small macroeconometric model: Klein model I as an example—A MODLER workbook. Working paper MPRA, 13102, p. 138.Google Scholar
  108. Rivière, P. (1995). Sicore, un outil et une méthode pour le chiffrement automatique à l’insee. Courrier des statistiques, 74, 65–69.Google Scholar
  109. Roy, H. (1989). Compte rendu de la réunion Astronomie & Informatique du 8 octobre 1988, L’Astronomie, fév. pp. 91–92.Google Scholar
  110. Rycroft, R. S. (1993). Microcomputer software of interest to forecasters in comparative review: An update. International Journal of Forecasting, 9, 531–575.CrossRefGoogle Scholar
  111. Shannon, C.E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27, 379–423 and 623–656, July and Oct.Google Scholar
  112. Shoven, J. B., & Whalley, J. (1984). Applied general-equilibrium models of taxation and international trade: An introduction and survey. Journal of Economie Literature, 22, 1007–1081.Google Scholar
  113. Schuhl, P. (1996). The INSEE automatic coding system. Proceedings of the annual research conference, Bureau of Census, Washington.Google Scholar
  114. Silk, J. (1996). Systems estimation : A comparison of sas, shazam and tsp. Journal of Applied Econometrics, 11, 437–450.CrossRefGoogle Scholar
  115. Stokes, H. H. (2005). The sensitivity of the econometric results to alternative implications of least squares. Journal of Economic and Social Measurement, 30(1), 9–38.Google Scholar
  116. Tennyson, S. (1992). Data-checking methods in a data entry system based on SAS software: Exploring the possibilities. SAS users group international 17, 12-15 April. Honolulu, Hawaii, pp. 68–72.Google Scholar
  117. Tesfatsion, L. & Judd, K.L. (Eds), (2006). Handbook of computational economics, vol. 2—agent-based computational economics (p. 872). Amsterdam: North Holland.Google Scholar
  118. Tinbergen, J. (1968). Statistical testing of business-cycle theories, Geneva, league of nations economic intelligence service. New York: Agathon Press. 1939 reprint.Google Scholar
  119. Tinbergen, J. (1939–1940). Econometric business cycle research. The Review of Economic Studies, 7, 73–90.Google Scholar
  120. Tinbergen, J. (1951). Econometrics (p. 258). London: George Allen and Unwin.Google Scholar
  121. Torene, R., & Goettee, D. (1980). Toward a general purpose economic data base. In F.G. Adams & N.J. Glickman (Eds.), Modeling the multiregional economic system (pp. 65–71). Lexington: Lexington Books.Google Scholar
  122. Vanoli, A. (2002). Une histoire de la comptabilité nationale. Repères (p. 655). Coll: La découverte.Google Scholar
  123. Varian, H.R. (1996). Mathematica for economists, in H.M. Amman, D.A. Kendrick & J. Rust (Eds.), Handbook of computational economics—vol. 1. Amsterdam; North-Holland (pp. 489–505). Series in handbook in economics, 13.Google Scholar
  124. Vieira, W. C., & Lelis, Lelis L. H. S. (2005). Programming languages in economics: A comparison among fortran 77, c++, and java. Revistat de Economia e Agronegocio/Brazilian Review of Economics and Agribusiness, 3(3), 427–443.Google Scholar
  125. Venables, W. N., & Ripley, B. D. (2000). S programming. New York: Springer. p. 265.CrossRefGoogle Scholar
  126. Volle, M. (1977). Pourquoi faire l’histoire de la statistique ? Courrier des statistiques, 1, 31–32.Google Scholar
  127. Volle, M. (1982). Histoire de la statistique industrielle (p. 303). Paris: Economica.Google Scholar
  128. Waelbroeck, J.L. (Ed.), (1976). The models of project LINK. Contributions to economic analysis (p. 409). Amsterdam: North-Holland.Google Scholar
  129. Wenzowski, M. (1988). ACTR, a generalized coding system. Survey Methodology, December.Google Scholar
  130. Wilkinson, L. (1985). Statistics quiz. Evanston IL: Systat.Google Scholar
  131. Wilkinson, L. (1994). Practical guidelines for testing statistical software. In P. Dirschedl & R. Ostermann (Eds.), Computational statistics. Heidelberg: Physica-Verlag.Google Scholar
  132. Wilcox, D. W. (1998). The construction of us consumption data: Some facts and their implication for empirical work. American Economic Review, 82, 922–941.Google Scholar
  133. Yalta, A.T. & Yalta, A.Y. (2010). Should economists use open source software for doing research? Working papers TOBB University of Economics and Technology. 10–07, January p. 27.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.GAMA TeamUniversity of Western Paris–Nanterre La DéfenseNanterreFrance

Personalised recommendations