Advertisement

Computational Economics

, Volume 41, Issue 1, pp 1–9 | Cite as

Response Surface Estimates of the Cross-Sectionally Augmented IPS Tests for Panel Unit Roots

  • Jesús Otero
  • Jeremy Smith
Article

Abstract

This paper estimates response surface coefficients for a large range of quantiles of the cross-sectionally augmented IPS (CIPS) test of Pesaran (2007), for different specifications of the deterministic components. An Excel programme is available to calculate the P value associated with a CIPS test statistic.

Keywords

CIPS test Monte Carlo Unit roots Response surface Critical values P values 

JEL Classification

C12 C15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cheung Y. E., Lai K. S. (1993) Finite sample sizes of Johansen’s likelihood ratio tests for cointegration. Oxford Bulletin of Economics and Statistics 55: 313–328CrossRefGoogle Scholar
  2. Dickey D. A., Fuller W. A. (1979) Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association 74: 427–431Google Scholar
  3. Engle R. F., Granger C. W. J. (1987) Cointegration and error correction: Representation, estimation and testing. Econometrica 55: 251–276CrossRefGoogle Scholar
  4. Harvey D. I., van Dijk D. (2006) Sample size, lag order and critical values of seasonal unit root tests. Computational Statistics and Data Analysis 50: 2734–2751CrossRefGoogle Scholar
  5. Hylleberg S., Engle R. F., Granger C. W. J., Yoo B. S. (1990) Seasonal integration and cointegration. Journal of Econometrics 44: 215–238CrossRefGoogle Scholar
  6. Im K., Pesaran M. H., Shin Y. (2003) Testing for unit roots in heterogeneous panels. Journal of Econometrics 115: 53–74CrossRefGoogle Scholar
  7. Johansen S. (1988) Statistical analysis of cointegration vectors. Journal of Economic Dynamics and Control 12: 231–254CrossRefGoogle Scholar
  8. Kwiatkowski D., Phillips P. C. B., Schmidt P., Shin Y. (1992) Testing the null hypothesis of stationarity against the alternative of a unit root. Journal of Econometrics 54: 159–178CrossRefGoogle Scholar
  9. MacKinnon J. G. (1991) Critical values for cointegration tests. In: Engle R. F., Granger C. W. J. (eds) Long-run economic relationships: Readings in cointegration. Oxford University Press, Oxford, pp 267–276Google Scholar
  10. Mackinnon J. G. (1994) Approximate asymptotic distribution functions for unit-root and cointegration tests. Journal of Business and Economic Statistics 12: 167–176Google Scholar
  11. Mackinnon J. G. (1996) Numerical distribution functions for unit root and cointegration tests. Journal of Applied Econometrics 11: 601–618CrossRefGoogle Scholar
  12. Mackinnon J. G., Haug A. A., Michelis L. (1999) Numerical distribution functions of likelihood ratio tests for cointegration. Journal of Applied Econometrics 14: 563–577CrossRefGoogle Scholar
  13. Pesaran M. H. (2007) A simple panel unit root test in the presence of cross section dependence. Journal of Applied Econometrics 22: 265–312CrossRefGoogle Scholar
  14. Sephton P. S. (1995) Response surface estimates of the KPSS stationarity test. Economics Letters 47: 255–261CrossRefGoogle Scholar
  15. Strauss J., Yigit T. (2003) Shortfalls of panel unit root testing. Economics Letters 81: 309–313CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  1. 1.Facultad de EconomíaUniversidad del RosarioBogotaColombia
  2. 2.Department of EconomicsUniversity of WarwickCoventryUK

Personalised recommendations