Computational Economics

, Volume 41, Issue 1, pp 71–88 | Cite as

Computing Equilibria in Discounted 2 × 2 Supergames

Article

Abstract

This article examines the subgame perfect pure strategy equilibrium paths and payoff sets of discounted supergames with perfect monitoring. The main contribution is to provide methods for computing and tools for analyzing the equilibrium paths and payoffs in repeated games. We introduce the concept of a first-action feasible path, which simplifies the computation of equilibria. These paths can be composed into a directed multigraph, which is a useful representation for the equilibrium paths. We examine how the payoffs, discount factors and the properties of the multigraph affect the possible payoffs, their Hausdorff dimension, and the complexity of the equilibrium paths. The computational methods are applied to the 12 symmetric strictly ordinal 2 × 2 games. We find that these games can be classified into three groups based on the complexity of the equilibrium paths.

Keywords

Repeated game 2 × 2 game Subgame perfect equilibrium Equilibrium path Payoff set Multigraph 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abreu D. (1988) On the theory of infinitely repeated games with discounting. Econometrica 56(2): 383–396CrossRefGoogle Scholar
  2. Abreu D., Rubinstein A. (1988) The structure of Nash equilibrium in repeated games with finite automata. Econometrica 56(6): 1259–1281CrossRefGoogle Scholar
  3. Abreu D., Pearce D., Stacchetti E. (1986) Optimal cartel equilibria with imperfect monitoring. Journal of Economic Theory 39(1): 251–269CrossRefGoogle Scholar
  4. Abreu D., Pearce D., Stacchetti E. (1990) Toward a theory of discounted repeated games with imperfect monitoring. Econometrica 58(5): 1041–1063CrossRefGoogle Scholar
  5. Axelrod R. (1984) The evolution of cooperation. Basic, New YorkGoogle Scholar
  6. Benoit J. P., Krishna V. (1985) Finitely repeated games. Econometrica 53(4): 905–922CrossRefGoogle Scholar
  7. Berg, K. & Kitti, M. (2011). Equilibrium paths in discounted supergames. Working paper.Google Scholar
  8. Brams, S. J. (2003). Negotiation Games: Applying game theory to bargaining and arbitration. Routledge.Google Scholar
  9. Cronshaw M. B. (1997) Algorithms for finding repeated game equilibria. Computational Economics 10: 139–168CrossRefGoogle Scholar
  10. Cronshaw M. B., Luenberger D. G. (1994) Strongly symmetric subgame perfect equilibria in infinitely repeated games with perfect monitoring. Games and Economic Behavior 6: 220–237CrossRefGoogle Scholar
  11. Edgar G. A., Golds J. (1999) A fractal dimension estimate for a graph-directed iterated function system of non-similarities. Indiana University Mathematics Journal 48(2): 429–447CrossRefGoogle Scholar
  12. Edgar G. A., Mauldin R. D. (1992) Multifractal decompositions of digraph recursive fractals. Proceedings of the London Mathematical Society 65: 604–628CrossRefGoogle Scholar
  13. Falconer K. J. (1988) The Hausdorff dimension of self-affine fractals. Mathematical Proceedings of the Cambridge Philosophical Society 103: 169–179CrossRefGoogle Scholar
  14. Falconer K. J. (1992) The dimension of self-affine fractals ii. Mathematical Proceedings of the Cambridge Philosophical Society 111: 339–350CrossRefGoogle Scholar
  15. Fudenberg D., Maskin E. (1986) The folk theorem in repeated games with discounting and incomplete information. Econometrica 54: 533–554CrossRefGoogle Scholar
  16. Hauert C. (2001) Fundamental clusters in 2 × 2 spatial games. Proceedings of the Royal Society B 268: 761–769CrossRefGoogle Scholar
  17. Judd K., Yeltekin Ş., Conklin J. (2003) Computing supergame equilibria. Econometrica 71: 1239–1254CrossRefGoogle Scholar
  18. Kilgour D. M., Fraser N. M. (1988) A taxonomy of all ordinal 2 × 2 games. Theory and Decision 24: 99–117CrossRefGoogle Scholar
  19. Kitti, M. (2011). Conditional Markov equilibria in discounted dynamic games. Working paper.Google Scholar
  20. Kitti M. (2011) Conditionally stationary equilibria in discounted dynamic games. Dynamic Games and Applications, 1(4): 514–533CrossRefGoogle Scholar
  21. Lehrer E., Pauzner A. (1999) Repeated games with differential time preferences. Econometrica 67: 393–412CrossRefGoogle Scholar
  22. Mailath G. J., Samuelson L. (2006) Repeated Games and Reputations: Long-Run Relationships. Oxford University Press, OxfordCrossRefGoogle Scholar
  23. Mailath G. J., Obara I., Sekiguchi T. (2002) The maximum efficient equilibrium payoff in the repeated prisoners’ dilemma. Games and Economic Behavior 40: 99–122CrossRefGoogle Scholar
  24. Mauldin R. D., Williams S. C. (1988) Hausdorff dimension in graph directed constructions. Transactions of the American Mathematical Society 309(2): 811–829CrossRefGoogle Scholar
  25. Maynard Smith J. (1982) Evolution and the theory of games. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  26. Ngai S. M., Wang Y. (2001) Hausdorff dimension of self-similar sets with overlaps. Journal of the London Mathematicl Society 63: 655–672CrossRefGoogle Scholar
  27. Rapoport A., Guyer M. (1966) A taxonomy of 2 × 2 games. General Systems: Yearbook of the Society for General Systems Research 11: 203–214Google Scholar
  28. Rellick L. M., Edgar G. A., Klapper M. H. (1991) Calculating the Hausdorff dimension of tree structures. Journal of Statistical Physics 64(1): 77–85CrossRefGoogle Scholar
  29. Robinson, D. & Goforth, D. (2005). The topology of the 2 × 2 games: A new periodic table. New York: Routledge.Google Scholar
  30. Rubinstein A. (1986) Finite automata play the repeated prisoner’s dilemma. Journal of Economic Theory 39: 83–96CrossRefGoogle Scholar
  31. Salonen H., Vartiainen H. (2008) Valuating payoff streams under unequal discount factors. Economics Letters 99(3): 595–598CrossRefGoogle Scholar
  32. Tarjan R. (1972) Depth-first search and linear graph algorithms. SIAM Journal on Computing 1(2): 146–160CrossRefGoogle Scholar
  33. Walliser B. (1988) A simplified taxonomy of 2 × 2 games. Theory and Decision 25: 163–191CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  1. 1.Aalto University School of Science, Systems Analysis LaboratoryAaltoFinland
  2. 2.Department of EconomicsUniversity of TurkuTurkuFinland

Personalised recommendations