Computational Economics

, Volume 41, Issue 4, pp 517–524

SIMUL 3.2: An Econometric Tool for Multidimensional Modelling

Article

Abstract

Initially developed in the context of \({\tt REGILINK}\) project, \({\tt SIMUL 3.2}\) econometric software is able to estimate and to run large-scale dynamic multi-regional, multi-sectoral models. The package includes a data bank management module, \({\tt GEBANK}\) which performs the usual data import/export functions, and transformations (especially the RAS and the aggregation one), a graphic module, \({\tt GRAPHE}\) , a cartographic module, \({\tt GEOGRA}\) for a “typical use”. For an “atypical use” the package includes \({\tt CHRONO}\) to help for the WDC (Working Days Correction) estimation and \({\tt GNOMBR}\) to replace the floating point arithmetic by a multi-precision one in a program. Although the current package includes a basic estimation’s (OLS) and solving’s (Gauss–Seidel) algorithms, it allows user to implement the equations in their reduced form \({Y_{r,b}=X_{r,b} + \varepsilon}\) and to use alternative econometric equations. \({\tt SIMUL}\) provides results and reports documentation in ASCII and \({\hbox{\LaTeX}}\) formats. The next releases of \({\tt SIMUL}\) should improve the OLS procedure according to the Wilkinson’s criteria, include Hildreth–Lu’s algorithm and comparative statics option. Later, the package should allow other models implementations (Input–Output, VAR etc.). Even if it’s probably outclassed by the major softwares in terms of design and statistic tests sets, \({\tt SIMUL}\) provides freely basic evolutive tools to estimate and run easily and safety some large scale multi-sectoral, multi-regional, econometric models.

Keywords

Econometrics Econometric software Multi-sectoral multi-regional modelling Econometric modelling 

JEL Classification

C51 C52 C53 C63 C82 C87 C88 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almon C. (1991) The INFORUM approach to interindustry modeling. Economic Systems Research 3(1): 1–7CrossRefGoogle Scholar
  2. Buda, R. (1999). \({\tt SIMUL}\) —Manuel de références et guide d’utilisation version 3.1, Mimeo GAMA. Univ. de Paris 10.Google Scholar
  3. Buda, R. (2001). Les algorithmes de la modélisation—une présentation critique pour la modélisation économique, Document de travail MODEM 2001-44. Univ. de Paris 10, juil., http://mpra.ub.uni-muenchen.de/3926/.
  4. Buda, R. (2005a). Numerical analysis in econom(etr)ic softwares: the data-memory shortage management, Mimeo GAMA, University of Paris 10. http://mpra.ub.uni-muenchen.de/9145/.
  5. Buda, R. (2005b). Relevance of an accuracy control module implementation into an economic modelling software. Mimeo GAMA, University of Paris 10.Google Scholar
  6. Buda, R. (2008a). Two dimensional aggregation procedure: An alternative to the matrix algebraic algorithm. Computational Economics, 31(4), 397–408. http://www.springerlink.com/content/r256923113821068/.
  7. Buda, R. (2008b). Estimation de l’emploi régional et sectoriel salarié français : application à l’année 2006. Mimeo GAMA, Univ. de Paris 10, juil.Google Scholar
  8. Buda, R., (2010). Modélisation multi-dimensionnelle et analyse multi-régionale de l’économie française, Thèse de doctorat ès Sciences économiques. Univ. de Paris-Ouest Nanterre-La Défense.Google Scholar
  9. Buda, R. (2011). \({\tt SIMUL 3.2}\) —Quick User’s Manual, Nanterre, Mimeo GAMA. University of Paris 10.Google Scholar
  10. Courbis, R. (Ed.). (1979). Modèles régionaux et modèles régionaux-nationaux, Paris, Cujas, Coll. Travaux du GAMA.Google Scholar
  11. Courbis R., Sok H. (1983) Le modèle \({\tt ANAIS}\) , un modèle inter-sectoriel détaillé de l’économie française. Prévision et Analyse Économique 4(2): 73–95Google Scholar
  12. Durbin J., Watson G. S. (1950) Testing for serial correlation in least squares regression: I. Biometrika 37(3/4): 409–428CrossRefGoogle Scholar
  13. Durbin J., Watson G. S. (1951a) Testing for serial correlation in least squares regression: II. Biometrika 38(1/2): 159–177CrossRefGoogle Scholar
  14. Durbin J., Watson G. S. (1951b) Correctons to part I: Testing for serial correlation in least squares regression: I. Biometrika 38(1/2): 177–178CrossRefGoogle Scholar
  15. Durbin J., Watson G. S. (1971) Testing for serial correlation in least squares regression. III. Biometrika 58(1): 1–19Google Scholar
  16. Hallet A. H. (1990) On economic structure and model solution methods: Or should econometrician use Newton methods for model solution?. Oxford Bulletin of Economics and Statistics 52(3): 317–330CrossRefGoogle Scholar
  17. Hardin J. W. (1996) Hildreth–Lu regression. Stata Technical Bulletin 6(32): 30–31Google Scholar
  18. Herbert R. D. (2004) Modelling programming languages—Appropriate tools?. Journal of Economic and Social Measurement 29(1/3): 321–337Google Scholar
  19. Kendrick D. A., Amman H. M. (1999) Programming languages in economics. Computational Economics 14(1–2): 151–181CrossRefGoogle Scholar
  20. Koenkera R., Zeileis A. (2009) On reproducible econometric research. Journal of Applied Econometrics 24(5): 833–847CrossRefGoogle Scholar
  21. Lahr M. L., de Mesnard L. (2004) Biproportional techniques in input–output analysis: Table updating and structural analysis. Economic System Research 16(2): 115–134CrossRefGoogle Scholar
  22. Mallows C. L. (1973) Some comments on Cp. Technometrics 15: 661–675Google Scholar
  23. McCracken M. C., Sonnen C. A. (1973) Simulation system for econometric models. Informetrica, OttawaGoogle Scholar
  24. McCullough B. D. (2009) The accuracy of econometric software. In: Besley D. A., Kontoghiorghes E. J. (eds) Handbook of computational econometrics. Wiley, Chichester, pp 55–79CrossRefGoogle Scholar
  25. Nepomiastchy P., Rechenmann F. (1983) The equation writing external language of the MODULECO software. Journal of Economic Dynamics and Control 5(1): 37–57CrossRefGoogle Scholar
  26. Nerlove M. (2004) Programming languages: A short history for economics. Journal of Economic and Social Measurement 29(1–3): 189–203Google Scholar
  27. Neter J., Kutner M. H., Nachtsheim C., Wasserman W. (1996) Applied linear regression models. McGrawHill, New YorkGoogle Scholar
  28. Ooms, M. (2008). Trends in Applied Econometrics Software Development 1985–2008. An analysis of Journal of Applied Econometrics research articles, software reviews, data and code. Working Papers, VU University of Amsterdam, Faculty of Economics, Business Administration and Econometrics, 21.Google Scholar
  29. Peterson W. (1987) Computer software for a large econometric model. In: Barker T., Peterson W. (eds) The Cambridge multisectoral dynamic model of the British Economy. Cambridge University Press, Cambridge, pp 105–121Google Scholar
  30. Renfro C. G. (2004a) Econometric software: The first fifty years in perspective. Journal of Economic and Social Measurement 29: 1–70Google Scholar
  31. Renfro C. G. (2004b) A compendium of existing econometric software packages. Journal of Economic and Social Measurement 29: 359–409Google Scholar
  32. Renfro, C. G. (2009). The practice of econometric theory—An examination of the characteristics of econometric computation (Vol. 44). Series in Advanced studies in theoretical and applied econometrics. Berlin: Springer.Google Scholar
  33. Roy, H. (1989). Compte rendu de la réunion Astronomie & Informatique du 8 octobre 1988. L’Astronomie, fév., 91–92.Google Scholar
  34. Salyer, K., Dorofeenko, V., & Lee, G. (2005). A new algorithm for solving dynamic stochastic macroeconomic models. Working Paper Series, University of California-Davis, Department of Economics, 29 November 2005.Google Scholar
  35. Yalta, A. T., & Yalta, A. Y. (2010). Should economists use open source software for doing research? Working Papers TOBB University of Economics and Technology, 10-07 January 2010.Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  1. 1.Université de Paris Ouest-Nanterre La DéfenseNanterre CedexFrance

Personalised recommendations