Computational Economics

, Volume 39, Issue 1, pp 13–27 | Cite as

Using Chebyshev Polynomials to Approximate Partial Differential Equations: A Reply

  • Alejandro Mosiño


Caporale and Cerrato (Comput Econ 35(3):235–244, 2010) propose a simple method based on Chebyshev approximation and Chebyshev nodes to approximate partial differential equations (PDEs). However, they suggest not to use Chebyshev nodes when dealing with optimal stopping problems. Here, we use the same optimal stopping example to show that Chebyshev polynomials and Chebyshev nodes can still be successfully used together if we solve the model in a matrix environment.


Chebyshev polynomial approximation Chebyshev nodes Optimal stopping problem 

JEL Classification

C63 D81 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Caporale G. M., Cerrato M. (2010) Using Chebyshev polynomials to approximate partial differential equations. Computational Economics 35(3): 235–244CrossRefGoogle Scholar
  2. Dangl T., Wirl F. (2004) Investment under uncertainty: Calculating the value function when the Bellman equation cannot be solved analytically. Journal of Economic Dynamics and Control 28(7): 1437–1460CrossRefGoogle Scholar
  3. Deuflhard P., Bornemann F. (2002) Scientific computing with ordinary differential equations. Springer, HeidelbergGoogle Scholar
  4. Dixit A., Pindyck R. S. (1994) Investment under uncertainty. Princeton University Press, PrincetonGoogle Scholar
  5. He H., Pindyck R. S. (1992) Investments in flexible production capacity. Journal of Economic Dynamics and Control, Elsevier 16(3–4): 575–599CrossRefGoogle Scholar
  6. Judd K. L. (1992) Projection methods for solving aggregate growth models. Journal of Economic Theory 58: 410–452CrossRefGoogle Scholar
  7. Judd K. L. (1998) Numerical methods in economics. Massachusetts Institute of Technology Press, AmherstGoogle Scholar
  8. Majd S., Pindyck R. S. (1987) Time to build, option value, and investment decisions. Journal of Financial Economics, Elsevier 18(1): 7–27CrossRefGoogle Scholar
  9. Sezer M., Kaynak M. (1996) Chebyshev polynomial solutions of linear differential equations. International Journal of Mathematical Education in Science and Technology 27(4): 607–618CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  1. 1.IREGE, Université de SavoieAnnecy le VieuxFrance

Personalised recommendations