Computational Economics

, Volume 37, Issue 1, pp 13–38 | Cite as

Optimization in Non-Standard Problems. An Application to the Provision of Public Inputs

Article

Abstract

This paper describes a new direct search method for solving non-standard constrained optimization problems for which standard methodologies do not work properly. Our method (the Rational Iterative Multisection-RIM-algorithm) consists of different stages that can be interpreted as solutions according to different precision requirements. We have performed an application of RIM method to the case of public inputs provision. We prove that the RIM approach and standard methodologies achieve the same results with regular optimization problems while the RIM algorithm takes advantage over others comparable direct-search methods when facing non-standard optimization problems.

Keywords

Direct search Constrained optimization Multisection Optimal taxation Public input 

JEL Classification

C6 H21 H3 H41 H43 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkinson A. B., Stern N. H. (1974) Pigou, taxation and public goods. Review of Economic Studies 41: 119–128CrossRefGoogle Scholar
  2. Benninga S. (1989) Numerical techniques in finance. MIT Press, London, EnglandGoogle Scholar
  3. Burmen A., Janez P., Tadej T. (2005) Grid restrained Nelder–Mead algorithm. Computational Optimization and Applications 34: 359–375CrossRefGoogle Scholar
  4. Casado L. G., Csendes T., García I. (2000) A new multisection technique in interval methods for global optimization. Computing 65(3): 263–269CrossRefGoogle Scholar
  5. Casado L. G., Csendes T., Fernández J., Markót M. Cs. (2006) New interval methods for constrained global optimization. Mathematical Programming 106: 287–318CrossRefGoogle Scholar
  6. Chang M. (2000) Rules and levels in the provision of public goods: The role of complementarities between public good and taxed commodities. International Tax and Public Finance 7: 83–91CrossRefGoogle Scholar
  7. Colombier C., Pickhardt M. (2005) A note on public input specifications. International Advances in Economic Research 11: 13–18CrossRefGoogle Scholar
  8. Coope I. D., Price C. J. (2000) Frame based methods for unconstrained optimization. Journal of Optimization Theory and Applications 107: 261–274CrossRefGoogle Scholar
  9. Dorsey R. E., Mayer W. J. (1995) Genetic algorithms for estimation problems with multiple optima, nondifferentiability, and other irregular features. Journal of Business and Economic Statistics 13(1): 53–66CrossRefGoogle Scholar
  10. Feehan J. P. (1989) Pareto-efficiency with three varieties of public input. Public Finance/Finances Publiques 44: 237–248Google Scholar
  11. Feehan J. P., Matsumoto M. (2000) Productivity-enhancing public investment and benefit taxation: The case of factor-augmenting public inputs. Canadian Journal of Economics 33(1): 114–121CrossRefGoogle Scholar
  12. Feehan J. P., Matsumoto M. (2002) Distortionary taxation and optimal public spending on productive activities. Economic Inquiry 40(1): 60–68CrossRefGoogle Scholar
  13. Finkel D. E., Kelley C. T. (2006) Additive scaling and the DIRECT algorithm. Journal of Global Optimization 36: 597–608CrossRefGoogle Scholar
  14. Gaube T. (2000) When do distortionary taxes reduce the optimal supply of public goods? Journal of Public Economics 76: 151–180CrossRefGoogle Scholar
  15. Gaube T. (2005) Financing public goods with income taxation: Provision rules vs. provision level. International Tax and Public Finance 12: 319–334CrossRefGoogle Scholar
  16. Gaube T. (2007) A note on the link between public expenditures and distortionary taxation. Economics Bulletin 8(9): 1–10Google Scholar
  17. Gronberg T., Liu L. (2001) The second-best level of a public good: An approach based on the marginal excess burden. Journal of Public Economics Theory 3(4): 431–451CrossRefGoogle Scholar
  18. Jones D., Perttunen C., Stuckman B. (1993) Lipschitzian optimization without the Lipschitz constant. Journal of Optimization Theory and Application 79(1): 157–181CrossRefGoogle Scholar
  19. Kelley C. T. (1999) Detection and remediation of stagnation in the Nelder–Mead algorithm using a sufficient decrease condition. SIAM Journal on Optimization 10: 43–55CrossRefGoogle Scholar
  20. Kelley, C. T. (2003). Solving nonlinear equations with Newton’s method, no 1 in fundamentals of algorithms. Philadelphia, PA: SIAM.Google Scholar
  21. Kolda T. G., Lewis R. M., Torczon V. (2003) Optimization by direct search: New perspectives on some classical and modern methods. SIAM Review 45(3): 385–482CrossRefGoogle Scholar
  22. Lee D., Wiswall M. (2007) A parallel implementation of the simplex function minimization routine. Computational Economics 30: 171–187CrossRefGoogle Scholar
  23. Martínez D., Sánchez A. J. (2010a) A note on the optimal level of public inputs. Social Choice and Welfare 34(3): 363–369CrossRefGoogle Scholar
  24. Martínez, D., & Sánchez, A. J. (2010b). How sensitive is the provision of public inputs to specifications? WP ECON 10.04, Universidad Pablo de Olavide, Departamento de Economia.Google Scholar
  25. Mathews J.H., Fink K.D. (2004) Numerical methods using Matlab (4th ed.). Prentice-Hall, New JerseyGoogle Scholar
  26. Matsumoto M. (1998) A note on tax competition and public input provision. Regional Science and Urban Economics 28: 465–473CrossRefGoogle Scholar
  27. Mavrotas G. (2009) Effective implementation of the e-constraint method in multi-objective mathematical programming problems. Applied Mathematics and Computation 213: 455–465CrossRefGoogle Scholar
  28. Mckinnon K. (1998) Convergence of the Nelder–Mead simplex method to a nonstationary point. SIAM Journal on Optimization 9(1): 148–158CrossRefGoogle Scholar
  29. Pestieau P. (1976) Public intermediate goods and distortionary taxation. European Economic Review 7: 351–357CrossRefGoogle Scholar
  30. Pigou A.C. (1947) A study in public finance (3rd ed.). Macmillan, LondonGoogle Scholar
  31. Samuelson P. A. (1954) The pure theory of public expenditure. Review of Economics and Statistics 36: 387–389CrossRefGoogle Scholar
  32. Wilson J. D. (1991a) Optimal public good provision with limited lump-sum taxation. American Economic Review 81(1): 153–166Google Scholar
  33. Wilson J. D. (1991b) Optimal public good provision in the Ramsey tax model. Economics Letters 35: 57–61CrossRefGoogle Scholar
  34. Xidonas P., Mavrotas G., Psarras J. (2010) Equity portfolio construction and selection using multiobjective mathematical programming. Journal of Global Optimization 47(2): 185–209CrossRefGoogle Scholar
  35. Xidonas, P., Mavrotas, G., & Psarras, J. (2010b). Portfolio construction on the Athens Stock Exchange: A multiobjective optimization approach. Optimization (forthcoming).Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  1. 1.University Pablo de OlavideSevilleSpain

Personalised recommendations