Computational Economics

, 32:353 | Cite as

Multi-core CPUs, Clusters, and Grid Computing: A Tutorial

  • Michael Creel
  • William L. GoffeEmail author


The nature of computing is changing and it poses both challenges and opportunities for economists. Instead of increasing clock speed, future microprocessors will have “multi-cores” with separate execution units. “Threads” or other multi-processing techniques that are rarely used today are required to take full advantage of them. Beyond one machine, it has become easy to harness multiple computers to work in clusters. Besides dedicated clusters, they can be made up of unused lab computers or even your colleagues’ machines. Finally, grids of computers spanning the Internet are now becoming a reality.


Multi-core Cluster OpenMP MPI Grid 


  1. ATLAS—Automatically Tuned Linear Algebra Software. (2007).
  2. Azzin, I., Girardi, R., & Ratto, M. (2007). Parallelization of Matlab codes under windows platform for Bayesian estimation: A DYNARE application.
  3. Beaumont, P. M., & Bradshaw, P. T. (1995). A distributed parallel genetic algorithm for solving optimal growth models. Computational Economics, 8(3), 159–179.
  4. Becker, D. (2005). PlayStation 3 chip has split personality. ZDNet, February 7 2005.
  5. Clark, D. (2005). New chips pose a challenge to software makers. Wall Street Journal, April 14 2005.Google Scholar
  6. Condor Team. (2007). Condor version 6.8.5 manual. May 25, 2007,
  7. CPU World. (2007).
  8. Creel, M. (2005). User-friendly parallel computations with econometric examples. Computational Economics, 26(2), 107–128. Scholar
  9. Creel, M. (2007). I ran four million probits last night: HPC clustering with parallelKnoppix. Journal of Applied Econometrics, 22(1), 215–223. Scholar
  10. Delattre, F., & Prieur, M. (2006). Intel core 2 duo – test. July 2006,
  11. Dongarra, J. J. (2007). Performance of various computers using standard linear equations software. July 2007,
  12. Doornik, J. A., Hendry, D. F., & Shephard, N. (2005). Parallel computation in econometrics: A simplifed approach. In E. J. Kontoghiorgies (Ed.), Handbook on parallel computing and statistics. Marcel Dekker.
  13. Doornik J.A., Shephard N., Hendry D.F. (2002) Computationally-intensive econometrics using a distributed matrix-programming language. Philosophical Transactions of the Royal Society of London, Series A 360: 1245–1266CrossRefGoogle Scholar
  14. Ekvall, N. (1994). Experiences in the pricing of trivariate contingent claims with finite difference methods on a massively parallel computer. Computational Economics, 7(2), 63–72.
  15. Ferrall, C. (2005). Solving finite mixture models: Efficient computation in economics under serial and parallel execution. Computational Economics, 25(4), 343–379. Scholar
  16. Foster, I. (2002). What is the grid. July 20 2002,
  17. Foster, I. (2003). The grid: Computing without bounds. Scientific American, April 2003.,1759,1737050,00.asp.
  18. Foster, I., & Kesselman, C. (Eds.). (2003). The grid 2: Blueprint for a new computer infrastructure, Chapter 4: Concepts and architecture. Kluwer.Google Scholar
  19. Gilli M., Pauletto G. (1993) Econometric model simulation on parallel computers. International Journal of Supercomputer Applications 7: 254–264CrossRefGoogle Scholar
  20. Gropp, W., Lusk, E., Doss, N., & Skjellum, A. (1996). A high-performance, portable implementation of the MPI message passing interface standard. Parallel Computing, 22, 789–828.
  21. Grove, A. (2002). Changing vectors of Moore’s law. December 10 2002,
  22. Hachman, M. (2004). Intel firms up dual-core plans., December 7 2004,,1759,1737050,00.asp.
  23. Hermanns, M. (2002). Parallel programming in Fortran 95 using OpenMP.
  24. Intel Core2 Duo Desktop Processor E6700. (2007).
  25. Kontoghiorghes, E. J. (2000). Parallel strategies for solving SURE models with variance inequalities and positivity of correlations constraints. Computational Economics, 15(1), 89–106.
  26. Kontoghiorghes E.J., Nagurney A., Rustem B. (2000) Parallel computing in economics, finance and decision-making. Parallel Computing 26: 507–509CrossRefGoogle Scholar
  27. Kontoghiorgies, E. J. (Ed.). (2000). Parallel algorithms for linear models: Numerical methods and estimation problems. Kluwer Academic Publishers.Google Scholar
  28. Kontoghiorgies, E. J. (Ed.). (2005). Handbook of parallel computing and statistics. Marcel Dekker.Google Scholar
  29. LAM/MPI Parallel Computing. (2007).
  30. Lee, D., & Wiswall, M. (2007). A parallel implementation of the simplex function minimization routine. Computational Economics.
  31. Marr, D. T., Binns, F., Hill, D. L., Hinton, G., Koufaty, D. A., Miller, J. A., & Upton, M. (2002). Hyper-threading technology architecture and microarchitecture. Intel Technology Journal, 3(1), 4–21, February 14 2002, Scholar
  32. MPI-2: Extensions to the Message-passing Interface. (1997). Message Passing Interface Forum.
  33. Nagurney, A. (1996). Parallel computation. In H.M. Amman, D.A. Kendrick, & J. Rust (Eds.), Handbook of computational economics/handbooks in economics (Vol. 13, pp. 335–404). North-Holland: Elsevier Science.Google Scholar
  34. Nagurney A., Zhang D. (1998) A massively parallel implementation of a discrete-time algorithm for the computation of dynamic elastic demand and traffic problems modeled as projected dynamical systems. Journal of Economic Dynamics and Control 22: 1467–1485CrossRefGoogle Scholar
  35. Nagurney A., Takayama T., Zhang D. (1995) Massively parallel computation of spatial price equilibrium problems as dynamical systems. Journal of Economic Dynamics and Control 19: 3–37CrossRefGoogle Scholar
  36. OpenMP. (2007).
  37. OpenMP Architecture Review Board. (2005). OpenMP application program interface, version 2.5.
  38. Open MPI: Open Source High Performance Computing. (2007).
  39. Pauletto, G., & Gilli, M. (2000). Parallel Krylov methods for econometric model simulation. Computational Economics, 16(1), 173–186.
  40. Schmid, P., & Roos, A. (2005). Prescott reworked: The P4 600 series and extreme edition 3.73 GHz. Tom’s Hardware Guide, February 21 2005,
  41. Schmid, P., & Topelt, B. (2006). Game over? Core 2 duo knocks out Athlon 64. Tom’s Hardware Guide, July 14 2006,
  42. Sloan, J. D. (2004). High performance Linux clusters with OSCAR, Rocks, OpenMosix, and MPI (1st ed.). O’Reilly Media.Google Scholar
  43. Strom, D., & Gruener, W. (2005). Pat Gelsinger: A shot at running Intel. Tom’s Hardware Guide, May 6 2005,
  44. Swann C.A. (2002) Maximum likelihood estimation using parallel computing: An introduction to MPI. Computational Economics 19: 145–178CrossRefGoogle Scholar
  45. The Five Big Ideas Behind the Grid. (2007).
  46. The Role of the Globus Toolkit in the Grid Ecosystem. (2007).
  47. TOP500 Supercomputer Sites. (2007).
  48. van der Steen, A. J., & Dongarra, J. (2004). Overview of recent supercomputers.
  49. Young, S. (2005). Why the glut in fiber lines remains huge. Wall Street Journal, May 12 2005,,,SB111584986236831034,00.html.

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  1. 1.Department of Economics and Economic History, Edifici BUniversitat Autònoma de BarcelonaBellaterraSpain
  2. 2.Department of EconomicsSUNY—OswegoOswegoUSA

Personalised recommendations