Computational Economics

, Volume 32, Issue 1–2, pp 221–244 | Cite as

E&F Chaos: A User Friendly Software Package for Nonlinear Economic Dynamics

  • Cees Diks
  • Cars Hommes
  • Valentyn Panchenko
  • Roy van der Weide
Open Access


The use of nonlinear dynamic models in economics and finance has expanded rapidly in the last two decades. Numerical simulation is crucial in the investigation of nonlinear systems. E&F Chaos is an easy-to-use and freely available software package for simulation of nonlinear dynamic models to investigate stability of steady states and the presence of periodic orbits and chaos by standard numerical simulation techniques such as time series, phase plots, bifurcation diagrams, Lyapunov exponent plots, basin boundary plots and graphical analysis. The package contains many well-known nonlinear models, including applications in economics and finance, and is easy to use for non-specialists. New models and extensions or variations are easy to implement within the software package without the use of a compiler or other software. The software is demonstrated by investigating the dynamical behavior of some simple examples of the familiar cobweb model, including an extension with heterogeneous agents and asynchronous updating of strategies. Simulations with the E&F Chaos software quickly provide information about local and global dynamics and easily lead to challenging questions for further mathematical analysis.


Nonlinear dynamics Simulation software Heterogeneous agents 

JEL Classification

C60 E37 G10 



This paper was presented at the Fourth Workshop Modelli Dinamici in Economia e Finanza, September 21–23, 2006, Urbino, Italy. We thank all participants for helpful comments.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.


  1. Arrowsmith D.K., Place C.M. (1995) An introduction to dynamical systems. Cambridge University Press, CambridgeGoogle Scholar
  2. Boldrin M., Woodford M. (1990) Equilibrium models displaying endogenous fluctuations and chaos: A survey. Journal of Monetary Economics 25: 189–222CrossRefGoogle Scholar
  3. Brock W.A., Hommes C.H. (1997) A rational route to randomness. Econometrica 65: 1059–1095CrossRefGoogle Scholar
  4. Brock W.A., Hsieh D.A., LeBaron B. (1991) Nonlinear dynamics, chaos and instability: Statistical theory and economic evidence. MIT Press, CambridgeGoogle Scholar
  5. Chiarella C. (1988) The cobweb model: Its instability and the onset of chaos. Economic Modeling 5: 377–384CrossRefGoogle Scholar
  6. Day R.H. (1994) Complex economic dynamics. Volume I: An introduction to dynamical systems and market mechanisms. MIT Press, CambridgeGoogle Scholar
  7. Devaney R.L. (1989) An introduction to chaotic dynamical systems (2nd ed). Addison Wesley Publication, Redwood CityGoogle Scholar
  8. Diks C.G.H., Weide R. (2005) Herding, a-synchronous updating and heterogeneity in memory in a CBS. Journal of Economic Dynamics and Control 29: 741–763CrossRefGoogle Scholar
  9. Doedel, E. J., Paffenroth, R. C., Champneys, A. R., Fairgrieve, T. F., Kuznetsov, Y. A., Oldeman, B. E., Sandstede, B., & Wang, X. J. (2001). AUTO2000: Continuation and bifurcation software for ordinary differential equations. Applied and Computational Mathematics. California Institute of Technology.
  10. Ezekiel M. (1938) The cobweb theorem. Quarterly Journal of Economics 52: 255–280CrossRefGoogle Scholar
  11. Grandmont J.-M. (1985) On endogenous competitive business cycles. Econometrica 53: 995–1046CrossRefGoogle Scholar
  12. Grandmont, J.-M. (1988). Nonlinear difference equations, bifurcations and chaos: An introduction. CEPREMAP Working Paper No 8811, June 1988.Google Scholar
  13. Guckenheimer J., Holmes P. (1983) Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer Verlag, New YorkGoogle Scholar
  14. Hommes, C. H. (1991). Chaotic dynamics in economic models. Some simple case-studies. Groningen Theses in Economics, Management & Organization, Wolters-Noordhoff, Groningen.Google Scholar
  15. Hommes C.H. (1994) Dynamics of the cobweb model with adaptive expectations and nonlinear supply and demand. Journal of Economic Behavior & Organization 24: 315–335CrossRefGoogle Scholar
  16. Hommes, C. H. (2006). Heterogeneous agent models in economics and finance, In L. Tesfatsion & K. L. Judd (eds.), Handbook of computational economics, volume 2: Agent-based computational economics (pp. 1109–1186). Amsterdam: North-Holland, Chap. 23.Google Scholar
  17. Hommes C.H., Huang H., Wang D. (2005) A robust rational route to randomness in a simple asset pricing model. Journal of Economic Dynamics and Control 29: 1043–1072CrossRefGoogle Scholar
  18. Huberman B.A., Glance N.S. (1993) Evolutionary games and computer simulations. Proceedings of the National Academy of Sciences of the United States of America 90: 7716–7718CrossRefGoogle Scholar
  19. Kuznetsov Y. (1995) Elements of applied bifurcation theory. Springer Verlag, New YorkGoogle Scholar
  20. LeBaron, B. (2006), Agent-based computational finance. In L. Tesfatsion & K. L. Judd (eds.), Handbook of computational economics, volume 2: Agent-based computational economics (pp. 1187–1233). Amsterdam: North-Holland, Chap. 24.Google Scholar
  21. Li T.Y., Yorke J.A. (1975) Period three implies chaos. American Mathematical Monthly 82: 985–992CrossRefGoogle Scholar
  22. Medio A. (1992) Chaotic dynamics. Theory and applications to economics. Cambridge University Press, CambridgeGoogle Scholar
  23. Medio A., Lines M. (2001) Nonlinear dynamics: A primer. Cambridge University Press, CambridgeGoogle Scholar
  24. Mira C., Gardini L., Barugola A., Cathala J.-C. (1996) Chaotic dynamics in two-dimensional noninvertible maps. World Scientific, SingaporeGoogle Scholar
  25. Muth J.F. (1961) Rational expectations and the theory of price movements. Econometrica 29: 315–335CrossRefGoogle Scholar
  26. Nerlove M. (1958) Adaptive expectations and cobweb phenomena. Quarterly Journal of Economics 72: 227–240CrossRefGoogle Scholar
  27. Nowak M., May R.M. (1992) Evolutionary games and spatial chaos. Nature 359: 826–929CrossRefGoogle Scholar
  28. Nowak M., Bonhoeffer S., May R.M. (1992) Spatial and the maintainance of cooperation. Proceedings of the National Academy of Sciences of the United States of America 91: 4877–4881CrossRefGoogle Scholar
  29. Nusse, H. E., & Yorke, J. A. (1998). Dynamics: Numerical explorations (2nd ed.). Applied Mathematical Sciences (Vol. 101). Springer-Verlag.Google Scholar
  30. Palis J., Takens F. (1993) Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations. Cambridge University Press, CambridgeGoogle Scholar
  31. Racine J. (2006) gnuplot 4.0: A portable interactive plotting utility. Journal of Applied Econometrics 21: 133–141CrossRefGoogle Scholar
  32. Rosser J.B. (2000) From catastrophe to chaos: A general theory of economic discontinuities. Kluwer, BostonGoogle Scholar
  33. Wolf A., Swift J.B., Swinney L., Vastano J.A. (1985) Determining Lyapunov exponents from a time series. Physica D 16: 285–317CrossRefGoogle Scholar

Copyright information

© The Author(s) 2008

Authors and Affiliations

  • Cees Diks
    • 1
  • Cars Hommes
    • 1
  • Valentyn Panchenko
    • 2
  • Roy van der Weide
    • 3
  1. 1.CeNDEF, Department of Quantitative EconomicsUniversity of AmsterdamAmsterdamthe Netherlands
  2. 2.School of EconomicsUniversity of New South WalesSydneyAustralia
  3. 3.The World BankWashingtonUSA

Personalised recommendations