Advertisement

Mediators and Moderators of Homework–Outcome Relations in CBT for Depression: A Study of Engagement, Therapist Skill, and Client Factors

  • Rui Ying YewEmail author
  • Keith S. Dobson
  • Michael Zyphur
  • Nikolaos Kazantzis
Original Article
  • 40 Downloads

Abstract

Homework assignments are considered crucial to the generalization and maintenance of skills and cognitive reappraisal in cognitive behavior therapy (CBT). The present study examined the relationships among homework engagement (i.e., quantity and quality of adherence, taking into account task difficulties and obstacles), the theoretically meaningful determinants of engagement (i.e., client homework beliefs), therapist competence (i.e., in review, design, and planning of homework), and outcome in CBT for depression. Client factors (i.e., education level, marital status, and baseline depressive symptoms) were also examined as moderators of engagement-outcome relations. It was hypothesized that homework engagement would mediate the relationship between competence at one session and depressive symptoms at the next session. It was further hypothesized that homework beliefs would mediate the competence–engagement relationship. Independent observers assessed homework engagement, beliefs, and therapist competence in 50 client-therapist dyads, representing 233 sessions across five time points (sessions 3, 6, 9, 12, and 15). Cross-lagged panel analysis indicated no lagged competence–outcome effects and pooled multilevel analyses revealed no mediating effects of engagement or beliefs. However, higher client homework beliefs (more positive views) significantly predicted greater homework engagement. No evidence was obtained for hypothesized moderators. The present study is the first to examine specific homework beliefs as determinants of engagement. Findings underscore the importance of beliefs in understanding homework engagement, and provide avenues for future research.

Keywords

Homework Adherence Competence Cognitive behavior therapy Depression 

Notes

Acknowledgements

The authors would like to thank Tara Impala for reviewing an early version of the manuscript.

Author Contributions

All authors contributed to the study conception and design. Data collection was carried out by RYY and several research assistants at the Cognitive Behaviour Therapy Research Unit at Monash University. Data analyses were performed by RYY and MZ, with RYY, MZ and NK being equally responsible for interpretation of the results. RYY and NK had primary responsibility for writing the manuscript, and other authors reviewed, commented on, and edited previous versions of the manuscript. All authors read and approved the final manuscript.

Compliance with Ethical Standards

Conflict of Interest

Dr. Kazantzis reported being a board member of the International Association of Cognitive Therapy, which has a strategic partnership with the Academy of Cognitive Therapy; being a consultant to the Australian Psychological Society Institute; serving on the international advisory committee and receiving personal fees from the Beck Institute for Cognitive Behavior Therapy and Research; receiving compensation from SpringerNature; and receiving royalties from SpringerNature, Guilford, and Routledge. Rui Ying Yew, Keith S. Dobson, and Michael Zyphur declare that they have no conflict of interest.

Ethical Approval

CBT sessions were drawn from a clinical trial conducted at the University of Washington, on which Dr. Dobson was a Principal Investigator. This trial was funded by the National Institute of Mental Health (NIMH Grants 2R01 MH44063-06 and 5K02 MH00868-05), and participants in the trial had given informed consent for their data to be used for research purposes. The Cognitive Behaviour Therapy Research Unit (CBTRU) at Monash University was granted access to these data under a data access agreement with the University of Calgary, and with ethical approval from the La Trobe University and Monash University Human Research Ethics Committees.

Supplementary material

10608_2019_10059_MOESM1_ESM.pdf (629 kb)
Supplementary file1 (PDF 630 kb)

References

  1. Adams, J., & Scott, J. (2000). Predicting medication adherence in severe mental disorders. Acta Psychiatrica Scandinavica,101(2), 119–124.  https://doi.org/10.1034/j.1600-0447.2000.90061.x.CrossRefPubMedGoogle Scholar
  2. Addis, M. E., & Jacobson, N. S. (2000). A closer look at the treatment rationale and homework compliance in cognitive-behavioral therapy for depression. Cognitive Therapy and Research,24(3), 313–326.  https://doi.org/10.1023/A:1005563304265.CrossRefGoogle Scholar
  3. Alfonsson, S., Olsson, E., & Hursti, T. (2016). Motivation and treatment credibility predicts dropout, treatment adherence, and clinical outcomes in an internet-based cognitive behavioral relaxation program: A randomized controlled trial. Journal of Medical Internet Research,18(3), 1–18.  https://doi.org/10.2196/jmir.5352.CrossRefGoogle Scholar
  4. Alonzo, D. M., Harkavy-Friedman, J. M., Stanley, B., Burke, A., Mann, J. J., & Oquendo, M. A. (2011). Predictors of treatment utilization in major depression. Archives of Suicide Research,15(2), 160–171.  https://doi.org/10.1080/13811118.2011.566052.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Barber, J. P., Liese, B. S., & Abrams, M. J. (2003). Development of the cognitive therapy adherence and competence scale. Psychotherapy Research,13(2), 205–221.  https://doi.org/10.1093/ptr/kpg019.CrossRefGoogle Scholar
  6. Beck, A. T., Rush, A. J., Shaw, B. F., & Emery, G. (1979). Cognitive therapy of depression. New York, NY: The Guilford Press.Google Scholar
  7. Beck, A. T., Steer, R. A., & Garbin, M. G. (1988). Psychometric properties of the Beck Depression Inventory: Twenty-five years of evaluation. Clinical Psychology Review,8(1), 77–100.  https://doi.org/10.1016/0272-7358(88)90050-5.CrossRefGoogle Scholar
  8. Beck, J. S. (2011). Cognitive behavior therapy: Basics and beyond (2nd ed.). New York, NY: The Guilford Press.Google Scholar
  9. Borsboom, D., & Cramer, A. O. J. (2013). Network analysis: An integrative approach to the structure of psychopathology. Annual Review of Clinical Psychology,9, 91–121.  https://doi.org/10.1146/annurev-clinpsy-050212-185608.CrossRefPubMedGoogle Scholar
  10. Branson, A., Shafran, R., & Myles, P. (2015). Investigating the relationship between competence and patient outcome with CBT. Behaviour Research and Therapy,68, 19–26.  https://doi.org/10.1016/j.brat.2015.03.002.CrossRefPubMedGoogle Scholar
  11. Bryant, M. J., Simons, A. D., & Thase, M. E. (1999). Therapist skill and patient variables in homework compliance: Controlling an uncontrolled variable in cognitive therapy outcome research. Cognitive Therapy and Research,23(4), 381–399.  https://doi.org/10.1023/A:1018703901116.CrossRefGoogle Scholar
  12. Callan, J. A., Kazantzis, N., Park, S. Y., Moore, C., Thase, M. E., Emeremni, C. A., et al. (2019). Effects of cognitive behavior therapy homework adherence on outcomes: Propensity score analysis. Behavior Therapy,50(2), 285–299.  https://doi.org/10.1016/j.beth.2018.05.010.CrossRefPubMedGoogle Scholar
  13. Cammin-Nowak, S., Helbig-Lang, S., Lang, T., Gloster, A. T., Fehm, L., Gerlach, A. L., et al. (2013). Specificity of homework compliance effects on treatment outcome in CBT: Evidence from a controlled trial on panic disorder and agoraphobia. Journal of Clinical Psychology,69(6), 616–629.  https://doi.org/10.1002/jclp.21975.CrossRefPubMedGoogle Scholar
  14. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  15. Conklin, L. R., & Strunk, D. R. (2015). A session-to-session examination of homework engagement in cognitive therapy for depression: Do patients experience immediate benefits? Behaviour Research and Therapy,72, 56–62.  https://doi.org/10.1016/j.brat.2015.06.011.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Conklin, L. R., Strunk, D. R., & Cooper, A. A. (2018). Therapist behaviors as predictors of immediate homework engagement in cognitive therapy for depression. Cognitive Therapy and Research,42(1), 16–23.  https://doi.org/10.1007/s10608-017-9873-6.CrossRefPubMedGoogle Scholar
  17. Cooper, A. A., Kline, A. C., Graham, B., Bedard-Gilligan, M., Mello, P. G., Feeny, N. C., et al. (2017). Homework “dose”, type, and helpfulness as predictors of clinical outcomes in prolonged exposure for PTSD. Behavior Therapy,48(2), 182–194.  https://doi.org/10.1016/j.beth.2016.02.013.CrossRefPubMedGoogle Scholar
  18. Cramer, A. O. J., Waldorp, L. J., van der Maas, H. L. J., & Borsboom, D. (2010). Comorbidity: A network perspective. Behavioral and Brain Sciences,33(2–3), 137–193.  https://doi.org/10.1017/S0140525X09991567.CrossRefPubMedGoogle Scholar
  19. Crits-Christoph, P., Connolly Gibbons, M. B., & Mukherjee, D. (2013). Psychotherapy process-outcome research. In M. J. Lambert (Ed.), Bergin and Garfield’s handbook of psychotherapy and behavior change (6th ed.). Hoboken, NJ: Wiley.Google Scholar
  20. Crits-Christoph, P., Gallop, R., Gaines, A., Rieger, A., & Connolly Gibbons, M. B. (2018). Instrumental variable analyses for causal inference: Application to multilevel analyses of the alliance-outcome relation. Psychotherapy Research.  https://doi.org/10.1080/10503307.2018.1544724.CrossRefPubMedGoogle Scholar
  21. Curran, P. J., & Bauer, D. J. (2011). The disaggregation of within-person and between-person effects in longitudinal models of change. Annual Review of Psychology,62(1), 583–619.  https://doi.org/10.1146/annurev.psych.093008.100356.CrossRefPubMedPubMedCentralGoogle Scholar
  22. DeViva, J. C. (2014). Treatment utilization among OEF/OIF veterans referred for psychotherapy for PTSD. Psychological Services,11(2), 179–184.  https://doi.org/10.1037/a0035077.CrossRefPubMedGoogle Scholar
  23. Dozois, D. J. A., Dobson, K. S., & Ahnberg, J. L. (1998). A psychometric evaluation of the Beck Depression Inventory-II. Psychological Assessment,10(2), 83–89.  https://doi.org/10.1037/1040-3590.10.2.83.CrossRefGoogle Scholar
  24. Falkenström, F., Finkel, S., Sandell, R., Rubel, J. A., & Holmqvist, R. (2017). Dynamic models of individual change in psychotherapy process research. Journal of Consulting and Clinical Psychology,85(6), 537–549.  https://doi.org/10.1037/ccp0000203.CrossRefPubMedGoogle Scholar
  25. Farrer, L. M., Griffiths, K. M., Christensen, H., Mackinnon, A. J., & Batterham, P. J. (2014). Predictors of adherence and outcome in internet-based cognitive behavior therapy delivered in a telephone counseling setting. Cognitive Therapy and Research,38(3), 358–367.  https://doi.org/10.1007/s10608-013-9589-1.CrossRefGoogle Scholar
  26. Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149–1160. https://doi.org/10.3758/BRM.41.4.1149 CrossRefPubMedGoogle Scholar
  27. Fehm, L., & Mrose, J. (2008). Patients’ perspective on homework assignments in cognitive-behavioural therapy. Clinical Psychology and Psychotherapy,15(5), 320–328.  https://doi.org/10.1002/cpp.592.CrossRefPubMedGoogle Scholar
  28. Finn, R. H. (1970). A note on estimating the reliability of categorical data. Educational and Psychological Measurement,30(1), 71–76.  https://doi.org/10.1177/001316447003000106.CrossRefGoogle Scholar
  29. Flückiger, C., Hilpert, P., Goldberg, S. B., Caspar, F., Wolfer, C., Held, J., & Vîslă, A. (2019). Investigating the impact of early alliance on predicting subjective change at posttreatment: An evidence-based souvenir of overlooked clinical perspectives. Journal of Counseling Psychology. Advance online publication. https://dx.doi.org/10.1037/cou0000336 CrossRefPubMedGoogle Scholar
  30. Freeman, M. P., & Davis, M. F. (2010). Supportive psychotherapy for perinatal depression: Preliminary data for adherence and response. Depression and Anxiety,27(1), 39–45.  https://doi.org/10.1002/da.20596.CrossRefPubMedGoogle Scholar
  31. Garvie, P. A., Flynn, P. M., Belzer, M., Britto, P., Hu, C., Graham, B., et al. (2011). Psychological factors, beliefs about medication, and adherence of youth with human immunodeficiency virus in a multisite directly observed therapy pilot study. Journal of Adolescent Health,48(6), 637–640.  https://doi.org/10.1016/j.jadohealth.2010.09.014.CrossRefPubMedGoogle Scholar
  32. George, D., & Mallery, P. (2003). SPSS for Windows step by step: A simple guide and reference. 11.0 update (4th ed.). Boston: Allyn & Bacon.Google Scholar
  33. Gonzalez, V. M., Schmitz, J. M., & Delaune, K. A. (2006). The role of homework in cognitive-behavioral therapy for cocaine dependence. Journal of Consulting and Clinical Psychology,74(3), 633–637.  https://doi.org/10.1037/0022-006X.74.3.633.CrossRefPubMedGoogle Scholar
  34. Haaga, D. A. F., DeRubeis, R. J., Stewart, B. L., & Beck, A. T. (1991). Relationship of intelligence with cognitive therapy outcome. Behaviour Research and Therapy,29(3), 277–281.  https://doi.org/10.1016/0005-7967(91)90118-M.CrossRefPubMedGoogle Scholar
  35. Hamaker, E. L., Kuipers, R. M., & Grasman, R. P. (2015). A critique of the cross-lagged panel model. Psychological Methods,20(1), 102–116.  https://doi.org/10.1037/a0038889.CrossRefGoogle Scholar
  36. Hamilton, M. (1967). Development of a rating scale for primary depressive illness. British Journal of Clinical Psychology,6(4), 278–296.  https://doi.org/10.1111/j.2044-8260.1967.tb00530.x.CrossRefGoogle Scholar
  37. Hatcher, R. L., & Gillaspy, J. A. (2006). Development and validation of a revised short version of the Working Alliance Inventory. Psychotherapy Research,16(1), 12–25.  https://doi.org/10.1080/10503300500352500.CrossRefGoogle Scholar
  38. Hayes, A. M., Laurenceau, J., Feldman, G., Strauss, J. L., & Cardaciotto, L. (2007). Change is not always linear: The study of nonlinear and discontinuous patterns of change in psychotherapy. Clinical Psychology Review,27, 715–723.  https://doi.org/10.1016/j.cpr.2007.01.008.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Hebert, E. A., Vincent, N., Lewycky, S., & Walsh, K. (2010). Attrition and adherence in the online treatment of chronic insomnia. Behavioral Sleep Medicine,8(3), 141–150.  https://doi.org/10.1080/15402002.2010.487457.CrossRefPubMedGoogle Scholar
  40. Helbig, S., & Fehm, L. (2004). Problems with homework in CBT: Rare exception or rather frequent? Behavioural and Cognitive Psychotherapy,32(3), 291–301.  https://doi.org/10.1017/S1352465804001365.CrossRefGoogle Scholar
  41. Holdsworth, E., Bowen, E., Brown, S., & Howat, D. (2014). Client engagement in psychotherapeutic treatment and associations with client characteristics, therapist characteristics, and treatment factors. Clinical Psychology Review,34(5), 428–450.  https://doi.org/10.1016/j.cpr.2014.06.004.CrossRefPubMedGoogle Scholar
  42. Jacobson, N. S., Dobson, K. S., Truax, P. A., Addis, M. E., Koerner, K., Gollan, J. K., et al. (1996). A component analysis of cognitive-behavioral treatment for depression. Journal of Consulting and Clinical Psychology,64(2), 295–304.  https://doi.org/10.1037//1522-3736.3.1.323a.CrossRefPubMedGoogle Scholar
  43. Jungbluth, N. J., & Shirk, S. R. (2013). Promoting homework adherence in cognitive-behavioral therapy for adolescent depression. Journal of Clinical Child & Adolescent Psychology,42(4), 545–553.  https://doi.org/10.1080/15374416.2012.743105.CrossRefGoogle Scholar
  44. Kazantzis, N. (2000). Power to detect homework effects in psychotherapy outcome research. Journal of Consulting and Clinical Psychology,68(1), 166–170.  https://doi.org/10.1037/0022-006X.68.1.166.CrossRefPubMedGoogle Scholar
  45. Kazantzis, N., Brownfield, N. R., Mosely, L., Usatoff, A. S., & Flighty, A. J. (2017). Homework in cognitive behavioral therapy: A systematic review of adherence assessment in anxiety and depression (2011–2016). Psychiatric Clinics of North America,40(4), 625–639.  https://doi.org/10.1016/j.psc.2017.08.001.CrossRefPubMedGoogle Scholar
  46. Kazantzis, N., Clayton, X., Cronin, T. J., Farchione, D., Limburg, K., & Dobson, K. S. (2018). The Cognitive Therapy Rating Scale and Cognitive Therapy Scale-Revised as measures of therapist competence in cognitive behavior therapy for depression: Relations with short and long term outcome. Cognitive Therapy and Research,42(4), 385–397.  https://doi.org/10.1007/s10608-018-9919-4.CrossRefGoogle Scholar
  47. Kazantzis, N., Deane, F. P., & Ronan, K. R. (2000). Homework assignments in cognitive and behavioral therapy: A meta-analysis. Clinical Psychology: Science and Practice,7(2), 189–202.  https://doi.org/10.1093/clipsy.7.2.189.CrossRefGoogle Scholar
  48. Kazantzis, N., Deane, F. P., Ronan, K. R., & L’Abate, L. (Eds.). (2005a). Using homework assignments in cognitive behavior therapy. New York: Routledge.Google Scholar
  49. Kazantzis, N., Osborne, C., & Cronin, T. J. (2015). Working Alliance Inventory-Short Form-Observer (WAI-SR-O). Melbourne: Monash University.Google Scholar
  50. Kazantzis, N., Wedge, P., & Dobson, K. S. (2005b). Homework Adherence and Competence Scale (HAACS). Auckland: Massey University.Google Scholar
  51. Kazantzis, N., Whittington, C., & Dattilio, F. (2010). Meta-analysis of homework effects in cognitive and behavioral therapy: A replication and extension. Clinical Psychology: Science and Practice,17(2), 144–156.  https://doi.org/10.1111/j.1468-2850.2010.01204.x.CrossRefGoogle Scholar
  52. Kazantzis, N., Whittington, C., Zelencich, L., Kyrios, M., Norton, P. J., & Hofmann, S. G. (2016). Quantity and quality of homework compliance: A meta-analysis of relations with outcome in cognitive behavior therapy. Behavior Therapy,47(5), 755–772.  https://doi.org/10.1016/j.beth.2016.05.002.CrossRefPubMedGoogle Scholar
  53. Kuhn, M., & Johnson, K. (2013). Applied predictive modeling. New York, NY: Springer.CrossRefGoogle Scholar
  54. Little, R. (1988). A test of missing completely at random for multivariate data with missing values. Journal of the American Statistical Association,83(404), 1198–1202.  https://doi.org/10.1080/01621459.1988.10478722.CrossRefGoogle Scholar
  55. Little, R. (2011). Calibrated Bayes, for statistics in general, and missing data in particular. Statistical Science,26(2), 162–174.  https://doi.org/10.1214/10-STS318.CrossRefGoogle Scholar
  56. Little, T. D. (2013). Longitudinal structural equation modeling. New York, NY: Guilford.Google Scholar
  57. Lorenzo-Luaces, L., & DeRubeis, R. J. (2018). Miles to go before we sleep: Advancing the understanding of psychotherapy by modeling complex processes. Cognitive Therapy and Research,42(2), 212–217.  https://doi.org/10.1007/s10608-018-9893-x.CrossRefGoogle Scholar
  58. Maas, C. J. M., & Hox, J. J. (2005). Sufficient sample sizes for multilevel modeling. Methodology,1(3), 86–92.  https://doi.org/10.1027/1614-2241.1.3.86.CrossRefGoogle Scholar
  59. Mausbach, B. T., Moore, R., Roesch, S., Cardenas, V., & Patterson, T. L. (2010). The relationship between homework compliance and therapy outcomes: An updated meta-analysis. Cognitive Therapy and Research,34(5), 429–438.  https://doi.org/10.1007/s10608-010-9297-z.CrossRefPubMedPubMedCentralGoogle Scholar
  60. McDonald, B. R., & Morgan, R. D. (2013). Enhancing homework compliance in correctional psychotherapy. Criminal Justice and Behavior,40(7), 814–828.  https://doi.org/10.1177/0093854813480781.CrossRefGoogle Scholar
  61. Munder, T., Wilmers, F., Leonhart, R., Linster, H. W., & Barth, J. (2010). Working alliance inventory-short revised (WAI-SR): Psychometric properties in outpatients and inpatients. Clinical Psychology and Psychotherapy,17(3), 231–239.  https://doi.org/10.1002/cpp.658.CrossRefPubMedGoogle Scholar
  62. Muthén, L. K., & Muthén, B. O. (2017). Mplus User’s Guide (8th ed.). Los Angeles, CA: Muthén & Muthén.Google Scholar
  63. Newman, C. F. (2012). Core-competencies in cognitive-behavioral therapy. New York: Routledge.Google Scholar
  64. Olatunji, B. O., Rosenfield, D., Monzani, B., Krebs, G., Heyman, I., Turner, C., et al. (2015). Effects of homework compliance on cognitive-behavioral therapy with D-cycloserine augmentation for children with obsessive compulsive disorder. Depression and Anxiety,32(12), 935–943.  https://doi.org/10.1002/da.22423.CrossRefPubMedGoogle Scholar
  65. Owen, J., Adelson, J., Budge, S., Wampold, B., Kopta, M., Minami, T., et al. (2015). Trajectories of change in psychotherapy. Journal of Clinical Psychiatry,71(9), 817–827.  https://doi.org/10.1002/jclp.22191.CrossRefGoogle Scholar
  66. Pan, H., Liu, S., Miao, D., & Yuan, Y. (2018). Sample size determination for mediation analysis of longitudinal data. BMC Medical Research Methodology,18(1), 1–11.  https://doi.org/10.1186/s12874-018-0473-2.CrossRefGoogle Scholar
  67. Persons, J. B., Burns, D. D., & Perloff, J. M. (1988). Predictors of dropout and outcome in cognitive therapy for depression in a private practice setting. Cognitive Therapy and Research,12(6), 557–575.  https://doi.org/10.1007/BF01205010.CrossRefGoogle Scholar
  68. Raudenbush, S. J., & Bryk, A. S. (2002). Hierarchical linear models: applications and data analysis methods (2nd ed.). Thousand Oaks, CA: SAGE Publications Inc.Google Scholar
  69. Reise, S. P., Bonifay, W., & Haviland, M. G. (2018). Bifactor modelling and the evaluation of scale scores. In P. Irwing, T. Booth, & D. J. Hughes (Eds.), The Wiley handbook of psychometric testing: A multidisciplinary reference on survey, scale and test development (pp. 677–707). New York: Wiley.Google Scholar
  70. Rhemtulla, M., van Bork, R., & Cramer, A. O. J. (2018). Cross-lagged network models. Manucript submited for publication.Google Scholar
  71. Richardson, D., Hosemans, D., & Kazantzis, N. (2019). Engagement with health-promoting activities: Psychometric evaluation of the Homework Rating Scale in a large community sample. Manuscript in preparation.Google Scholar
  72. Rizvi, S. L., Vogt, D. S., & Resick, P. A. (2009). Cognitive and affective predictors of treatment outcome in cognitive processing therapy and prolonged exposure for posttraumatic stress disorder. Behaviour Research and Therapy,47(9), 737–743.  https://doi.org/10.1016/j.brat.2009.06.003.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Ryum, T., Stiles, T. C., Svartberg, M., & McCullough, L. (2010). The effects of therapist competence in assigning homework in cognitive therapy with cluster C personality disorders: Results from a randomized controlled trial. Cognitive and Behavioral Practice,17(3), 283–289.  https://doi.org/10.1016/j.cbpra.2009.10.005.CrossRefGoogle Scholar
  74. Schmidt, N. B., & Woolaway-Bickel, K. (2000). The effects of treatment compliance on outcome in cognitive-behavioral therapy for panic disorder: Quality versus quantity. Journal of Consulting and Clinical Psychology, 68(l), 13–18. https://doi.org/10.1037//00224106X.68.1.13 CrossRefPubMedGoogle Scholar
  75. Shaw, B. F., Elkin, I., Yamaguchi, J., Olmsted, M., Vallis, T. M., Dobson, K. S., et al. (1999). Therapist competence ratings in relation to clinical outcome in cognitive therapy of depression. Journal of Consulting and Clinical Psychology,67(6), 837–846.  https://doi.org/10.1037/0022-006X.67.6.837.CrossRefPubMedGoogle Scholar
  76. Spitzer, R. L., Williams, J. B. W., & Gibbon, M. (1987). Instruction manual for the Structured Clinical Interview for DSM-III-R. New York: New York State Psychiatric Institute.Google Scholar
  77. Startup, M., & Edmonds, J. (1994). Compliance with homework assignments in cognitive-behavioral psychotherapy for depression: Relation to outcome and methods of enhancement. Cognitive Therapy and Research,18(6), 567–579.  https://doi.org/10.1007/BF02355669.CrossRefGoogle Scholar
  78. Stirman, S. W., Gutner, C. A., Suvak, M. K., Adler, A., Calloway, A., & Resick, P. (2018). Homework completion, patient characteristics, and symptom change in cognitive processing therapy for PTSD. Behavior Therapy,49(5), 741–755.  https://doi.org/10.1016/j.beth.2017.12.001.CrossRefPubMedGoogle Scholar
  79. Streiner, D., Norman, G. R., & Cairney, J. (2015). Health measurement scales: A practical guide to their development and use (5th ed.). New York: Oxford University Press.CrossRefGoogle Scholar
  80. Strunk, D. R., Brotman, M. A., DeRubeis, R. J., & Hollon, S. D. (2010). Therapist competence in cognitive therapy for depression: Predicting subsequent symptom change. Journal of Consulting and Clinical Psychology,78(3), 429–437.  https://doi.org/10.1037/a0019631.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Tinsley, H. E. A., & Weiss, D. J. (2000). Interrater reliability and agreement. In H. E. A. Tinsley & S. D. Brown (Eds.), Handbook of applied multivariate statistics and mathematical modeling (pp. 95–124). San Diego, CA: Academic Press.CrossRefGoogle Scholar
  82. Vallis, T. M., Shaw, B. F., & Dobson, K. S. (1986). The Cognitive Therapy Scale: Psychometric properties. Journal of Consulting and Clinical Psychology,54(3), 381–385.  https://doi.org/10.1037/0022-006X.54.3.381.CrossRefPubMedGoogle Scholar
  83. Webb, C. A., DeRubeis, R. J., & Barber, J. P. (2010). Therapist adherence/competence and treatment outcome: A meta-analytic review. Journal of Consulting and Clinical Psychology,78(2), 200–211.  https://doi.org/10.1037/a0018912.CrossRefPubMedPubMedCentralGoogle Scholar
  84. Weck, F., Richtberg, S., Esch, S., Höfling, V., & Stangier, U. (2013). The relationship between therapist competence and homework compliance in maintenance cognitive therapy for recurrent depression: Secondary analysis of a randomized trial. Behavior Therapy,44(1), 162–172.  https://doi.org/10.1016/j.beth.2012.09.004.CrossRefPubMedGoogle Scholar
  85. Whisman, M. (1993). Mediators and moderators of change in cognitive therapy of depression. Psychological Bulletin,114(2), 248–265.  https://doi.org/10.1037/0033-2909.114.2.248.CrossRefPubMedGoogle Scholar
  86. Whitehurst, G. J. (1984). Interrater agreement for journal manuscript reviews. American Psychologist,39(1), 22–28.  https://doi.org/10.1037/0003-066X.39.1.22.CrossRefGoogle Scholar
  87. Young, J. E., & Beck, A. T. (1980). Cognitive Therapy Scale: Rating manual. Philadelphia, PA: University of Philadelphia.Google Scholar
  88. Yuan, Y., & MacKinnon, D. P. (2009). Bayesian mediation analysis. Psychological Methods,14(4), 301–322.  https://doi.org/10.1037/a0016972.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Zilcha-Mano, S., Dinger, U., McCarthy, K. S., & Barber, J. P. (2014). Does the alliance predict symptoms throughout treatment, or is it the other way around? Journal of Consulting and Clinical Psychology,82(6), 931–935.  https://doi.org/10.1037/a0035141.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Cognitive Behavior Therapy Research Unit, School of Psychological Sciences and Turner Institute of Brain and Mental HealthMonash UniversityClaytonAustralia
  2. 2.Department of PsychologyUniversity of CalgaryCalgaryCanada
  3. 3.Department of Management and MarketingUniversity of MelbourneParkvilleAustralia

Personalised recommendations