Advertisement

Cognitive Therapy and Research

, Volume 31, Issue 2, pp 147–160 | Cite as

Increased Parietal and Frontal Activation after Remission from Recurrent Major Depression: A Repeated fMRI Study

  • Kenneth Hugdahl
  • Karsten Specht
  • Eva Biringer
  • Susanne Weis
  • Rebecca Elliott
  • Åsa Hammar
  • Lars Ersland
  • Anders Lund
Original Article

Abstract

Nine patients with unipolar major depression were scanned with MRI twice over a 2-year period, and compared with 12 healthy control subjects. All patients fulfilled criteria for major depressive disorder, recurrent type, at first scanning. Level of depressive psychopathology was assessed by the Hamilton Depression Rating Scale. The participants had to work on a mental arithmetics/working memory task while in the MR scanner. The task consisted of single digits (1 to 9) that were shown to the participant, who had to add the numbers in successive pairs and press a response button when the sum was 10. Neuronal activation was recorded based on the BOLD contrast phenomenon in a functional MRI protocol. The results showed significant increase in activation for the patients in the inferior frontal gyrus and the superior and inferior parietal lobule at the second compared with the first MR scanning session. There were also significant correlations between the HDRS scores and neuronal activation which showed a negative correlation particularly in the inferior frontal and parietal lobe areas, which overlapped with similar areas activated in the healthy control participants. This may indicate normalization of brain activation in depressed patients as a function of time from an illness phase to a remission/recovery state.

Keywords

fMRI Depression Pre-post treatment Working memory Mental arithmetic 

Notes

Acknowledgements

The present study was financially supported by grants from the Research Council of Norway to Bjørn R. Rund University of Oslo (#122974/320) and Anders Lund and from Haukeland University Hospital (# PK1014) to Kenneth Hugdahl.

References

  1. Angst, J. (1992). Epidemiology of depression. Psychopharmacology, 106, 71–74.CrossRefGoogle Scholar
  2. Austin, M. P., Mitchell, P., & Goodwin, G. M. (2001). Cognitive deficits in depression: Possible implications for functional neuropathology. British Journal of Psychiatry, 178, 200–206.PubMedCrossRefGoogle Scholar
  3. Beats, B. C., Sahakian, B. J., & Levy, R. (1996). Cognitive performance in tests sensitive to frontal lobe dysfunction in the elderly depressed. Psychological Medicine, 26(3), 591–603.PubMedCrossRefGoogle Scholar
  4. Beauregard, M., Leroux, J. M., Bergman, S., Arzoumanian, Y., Beaudoin, G., Bourgouin, P., & Stip, E. (1998). The functional neuroanatomy of major depression: An fMRI study using an emotional activation paradigm. Neuroreport, 9(14), 3253–3258.PubMedCrossRefGoogle Scholar
  5. Bench, C. J., Friston, K. J., Brown, R. G., Frackowiak, R. S. J., & Dolan, R. J. (1993). Regional blood flow in depression measured by positron emission tomography: The relationship with clinical dimensions. Psychological Medicine, 23, 579–590.PubMedGoogle Scholar
  6. Bench, C. J., Friston, K. J., Brown, R. G., Scott, L. C., Frackowiak, R. S. J., & Dolan, R. J. (1992). The anatomy of melancholia-focal abnormalities of cerebral blood flow in major depression. Psychological Medicine, 22, 607–615.PubMedCrossRefGoogle Scholar
  7. Burt, D. B., Zembar, M. J., & Niederehe, G. (1995). Depression and memory impairment: A meta-analysis of the association, its pattern, and specificity. Psychological Bulletin, 117(2), 285–305.PubMedCrossRefGoogle Scholar
  8. Chochon, F., Cohen, L., van der Moortele, P. F., & Dehaene, S. (1999). Differential contributions of the left and right inferior parietal lobules to number processing. Journal of Cognitive Neuroscience, 11, 617–630.PubMedCrossRefGoogle Scholar
  9. Den Hartog, H. M., Derix, M. M., Van Bemmel, A. L., Kremer, B., & Jolles, J. (2003). Cognitive functioning in young and middle-aged unmedicated out-patients with major depression: Testing the effort and cognitive speed hypotheses. Psychol Med, 33(8), 1443–1451.CrossRefGoogle Scholar
  10. Dolan, R. J., Bench, C. J., Brown, R. G., Scott, L. C., & Frackowiak, R. S. J. (1994). Neuropsychological dysfunction in depression: The relationship to regional cerebral blood flow. Psychological Medicine, 24, 180–182.Google Scholar
  11. Drevets, W. C. (2001). Neuroimaging and neuropathological studies of depression: Implications for the cognitive-emotional features of mood disorders. Current Opinion in Neurobiology, 11, 240–249.PubMedCrossRefGoogle Scholar
  12. Drevets, W. C. (2003). Neuroimaging abnormalities in the amygdala in mood disorders. Annals of the New York Academy of Science, 985, 420–444.CrossRefGoogle Scholar
  13. Drevets, W. C., Videen, T. O., Price, J. L., Preskorn, S. H., Carmichael, S. T., & Raichle, M. E. (1992). A functional anatomical study of unipolar depression. Journal of Neuroscience, 12(9), 3628–3641.PubMedGoogle Scholar
  14. Elliott, R. (1998). The neuropsychological profile in unipolar depression. Trends in Cognitive Sciences, 2, 447–454.CrossRefGoogle Scholar
  15. Elliott, R., & Dolan, R. J. (2002). Functional neuroimaging of depression: A role for medial prefrontal cortex. In R. J. Davidson, & K. R. Scherer, & H. Hill Goldsmith (Eds.), Handbook of affective sciences (pp. 117–128). Oxford, New York: Oxford University Press.Google Scholar
  16. Fernandez, G., Specht, K., Weis, S., Tendolkar, I., Reuber, M., Fell, J., Klaver, P., Ruhlmann, J., Reul, J., & Elger, C. E. (2003). Intrasubject reproducibility of presurgical language lateralization and mapping using fMRI. Neurology, 60(6), 969–975.PubMedGoogle Scholar
  17. Goodwin, G. M. (1997). Neuropsychological and neuroimaging evidence for the involvement of the frontal lobes in depression. Journal of Psychopharmacology, 11(2), 115–122.PubMedCrossRefGoogle Scholar
  18. Grant, M. M., Thase, M. E., & Sweeney, J. A. (2001). Cognitive disturbance in outpatient depressed younger adults: Evidence of modest impairment. Biological Psychiatry, 50(1), 35–43.PubMedCrossRefGoogle Scholar
  19. Hamilton, M. (1960). A rating scale for depression. Journal of Neurology, 23, 56–62.Google Scholar
  20. Hammar, Å. (2003). Automatic and effortful information processing in unipolar major depression. Scandinavian Journal of Psychology, 44, 409–413.PubMedCrossRefGoogle Scholar
  21. Hammar, A., Lund, A., & Hugdahl, K. (2003a). Long-lasting cognitive impairment in unipolar major depression: A 6-month follow-up study. Psychiatry Research, 118(2), 189–196.CrossRefGoogle Scholar
  22. Hammar, A., Lund, A., & Hugdahl, K. (2003b). Selective impairment in effortful information processing in major depression. Journal of the International Neuropsychological Society, 9(6), 954–959.CrossRefGoogle Scholar
  23. Hartlage, S., Alloy, L. B., Vazquez, C., & Dykman, B. (1993). Automatic and effortful processing in depression. Psychological Bulletin, 113(2), 247–278.PubMedCrossRefGoogle Scholar
  24. Hasher, L., & Zacks, R. T. (1979). Automatic and effortful processes in memory. Journal of Experimental Psychology: General, 108, 356–388.CrossRefGoogle Scholar
  25. Hugdahl, K., Rund, B. R., Lund, A., Asbjornsen, A., Egeland, J., Ersland, L., Landro, N. I., Roness, A., Stordal, K. I., Sundet, K., & Thomsen, T. (2004). Brain activation measured with fMRI during a mental arithmetic task in schizophrenia and major depression. American Journal of Psychiatry, 161(2), 286–293.PubMedCrossRefGoogle Scholar
  26. Kessler, R. C., McGonagle, K. A., Zhao, S., Nelson, C. B., Hughes, M., Eshleman, S., Wittchen, H. U. & Kendler, K. S. (1994). Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States. Results from the National Comorbidity Survey. Archives of General Psychiatry, 51, 8–19.PubMedGoogle Scholar
  27. Kringlen, E., Torgersen, S., & Cramer, V. (2001). A Norwegian psychiatric epidemiological study. American Journal of Psychiatry, 158(7), 1091–1098.PubMedCrossRefGoogle Scholar
  28. Landrø, N. I., Rund, B. R., Lund, A., Sundet, K., Mjellem, N., Asbjørnsen, A., Thomsen, T., Ersland, L., Lundervold, A., Smievoll, A. I., Egeland, J., Stordal, K., Roness, A., Sundberg, H., & Hugdahl, K. (2001). Honig’s model of working memory and brain activation: An fMRI study. NeuroReport, 12, 4047–4054.PubMedCrossRefGoogle Scholar
  29. Liotti, M., & Mayberg, H. S. (2001). The role of functional neuroimaging in the neuropsychology of depression. Journal of Clinical and Experimental Neuropsychology, 23(1), 121–136.PubMedCrossRefGoogle Scholar
  30. Machielsen, W. C., Rombouts, S. A., Barkhof, F., Scheltens, P., & Witter, M. P. (2000). fMRI of visual encoding: Reproducibility of activation. Human Brain Mapping, 9(3), 156–164.PubMedCrossRefGoogle Scholar
  31. Mayberg, H. (2002). Depression, II: Localization of pathophysiology. American Journal of Psychiatry, 159(12), 1979.PubMedCrossRefGoogle Scholar
  32. Mayberg, H. S., Brannan, S. K., Tekell, J. L., Silva, J. A., Mahurin, R. K., McGinnis, S., & Jerabek, P. A. (2000). Regional metabolic effects of fluoxetine in major depression: Serial changes and relationship to clinical response. Biological Psychiatry, 48(8), 830–843.PubMedCrossRefGoogle Scholar
  33. Mayberg, H. S., Liotti, M., Brannan, S. K., McGinnis, S., Mahurin, R. K., Jerabek, P. A., Silva, J. A., Tekell, J. L., Martin, C. C., Lancaster, J. L., & Fox, P. T. (1999). Reciprocal limbic-cortical function and negative mood: Converging PET findings in depression and normal sadness. American Journal of Psychiatry, 156(5), 675–682.PubMedGoogle Scholar
  34. McGonigle, D. J., Howseman, A. M., Athwal, B. S., Friston, K. J., Frackowiak, R. S., & Holmes, A. P. (2000). Variability in fMRI: An examination of intersession differences. Neuroimage, 11(6 Pt 1), 708–734.PubMedCrossRefGoogle Scholar
  35. Menon, V., Anagnoson, R. T., Mathalon, D. H., Glover, G. H., & Pfefferbaum, A. (2001). Functional neuroanatomy of auditory working memory in schizophrenia: Relation to positive symptoms. NeuroImage, 13, 433–446.PubMedCrossRefGoogle Scholar
  36. Merriam, E. P., Thase, M. E., Haas, G. L., Keshavan, M. S., & Sweeney, J. A. (1999). Prefrontal cortical dysfunction in depression determined by Wisconsin Card Sorting Test performance. American Journal of Psychiatry, 156, 780–782.PubMedGoogle Scholar
  37. Mintz, J., Mintz, I. L., & Arruda, M. J. (1992). Treatments of depression and the functional capacity to work. Archives of General Psychiatry, 49, 761–768.PubMedGoogle Scholar
  38. Murphy, F. C., Rubinsztein, J. S., Michael, A., Rogers, R. D., Robbins, T. W., Paykel, E. S., & Sahakian, B. J. (2001). Decision-making cognition in mania and depression. Psychological Medicine, 31(4), 679–693.PubMedCrossRefGoogle Scholar
  39. Murphy, J. M., Laird, N. M., Monson, R. R., Sobol, A. M., & Leighton, A. H. (2000). A 40-year perspective on the prevalence of depression. Archives of General Psychiatry, 57, 209–215.PubMedCrossRefGoogle Scholar
  40. Pfleiderer, B., Michael, N., Erfurth, A., Ohrmann, P., Hohmann, U., Wolgast, M., Fiebich, M., Arolt, V., & Heindel, W. (2003). Effective electroconvulsive therapy reverses glutamate/glutamine deficit in the left anterior cingulum of unipolar depressed patients. Psychiatry Research, 122(3), 185–192.PubMedCrossRefGoogle Scholar
  41. Price, C. J., & Friston, K. J. (1997). Cognitive conjunction: A new approach to brain activation experiments. Neuroimage, 5(4 Pt 1), 261–270.PubMedCrossRefGoogle Scholar
  42. Purcell, R., Maruff, P., Kyrios, M., & Pantelis, C. (1997). Neuropsychological function in young patients with unipolar major depression. Psychological Medicine, 27(6), 1277–1285.PubMedCrossRefGoogle Scholar
  43. Rombouts, S. A., Barkhof, F., Hoogenraad, F. G., Sprenger, M., & Scheltens, P. (1998). Within-subject reproducibility of visual activation patterns with functional magnetic resonance imaging using multislice echo planar imaging. Magnetic Resonance Imaging, 16(2), 105–113.PubMedCrossRefGoogle Scholar
  44. Shenal, B. V., Harrison, D. W., & Demaree, H. A. (2003). The neuropsychology of depression: A literature review and preliminary model. Neuropsychology Review, 13(1), 33–42.PubMedCrossRefGoogle Scholar
  45. Specht, K., Willmes, K., Shah, N. J., & Jancke, L. (2003). Assessment of reliability in functional imaging studies. Journal of Magnetic Resonance Imaging, 17(4), 463–471.PubMedCrossRefGoogle Scholar
  46. Veiel, H. O. (1997). A preliminary profile of neuropsychological deficits associated with major depression. Journal of Clinical and Experimental Neuropsychology, 19(4), 587–603.PubMedGoogle Scholar
  47. Warrington, E. K., James, M., & Maciejewski, C. (1986). The WAIS as a lateralizing and localising diagnostic instrument. A study of 656 patients with cerebral lesions. Neuropsychologia, 24, 223–239.PubMedCrossRefGoogle Scholar
  48. Wechsler, D. (1981). Wechsler adult intelligence scale-revised. New York: Psychological Corporation.Google Scholar
  49. Zakzanis, K. K., Leach, L., & Kaplan, E. (1999). Neuropsychological differential diagnosis. Lisse: Swets & Zeitlinger.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Kenneth Hugdahl
    • 1
  • Karsten Specht
    • 2
  • Eva Biringer
    • 3
  • Susanne Weis
    • 4
  • Rebecca Elliott
    • 5
  • Åsa Hammar
    • 4
  • Lars Ersland
    • 6
  • Anders Lund
    • 7
  1. 1.Department of Biological and Medical Psychology, Division of PsychiatryUniversity of Bergen, Haukeland University HospitalBergenNorway
  2. 2.Department of Biological and Medical Psychology, and Clinical EngineeringUniversity of Bergen, and Haukeland University HospitalBergenNorway
  3. 3.Department of PsychiatryHaugesund HospitalHaugesundNorway
  4. 4.Department of Biological and Medical PsychologyUniversity of BergenBergenNorway
  5. 5.Neuroscience and Psychiatry UnitUniversity of ManchesterManchesterUK
  6. 6.Department of Clinical Engineering, and Department of Surgical SciencesHaukeland University Hospital, and University of BergenBergenNorway
  7. 7.Department of Clinical MedicineHaukeland University Hospital, and University of BergenBergenNorway

Personalised recommendations