Advertisement

Journal of Consumer Policy

, Volume 33, Issue 2, pp 119–141 | Cite as

The Timing of Daily Demand for Goods and Services—Microsimulation Policy Results of an Aging Society, Increasing Labour Market Flexibility, and Extended Public Childcare in Germany

  • Joachim Merz
  • Dominik Hanglberger
  • Rafael Rucha
Original Paper

Abstract

Knowledge about the timing of consumption opens new insights into consumption behaviour for consumer, economic, social, as well as for communal and societal policies. It not only allows sound information for a better match of timely supply and demand but also about everyday living arrangements. This study contributes to the timing aspect of daily consumption by posing the question: How is the timing of daily demand for goods and services affected by major changes in German society? We concentrate on important and currently discussed developments and policies: the huge shift in Germany’s demographic structure with an aging society (with a population forecast for 2020 by the German Federal Statistical Office), the deregulation and the further expansion in flexibility of the labour market, and the current policy of extending public childcare support. For each aspect and policy, we first describe the actual timing of daily demand for goods and services. With the microsimulation approach and different scenarios, we then quantify the respective societal and policy impacts based on more than 37 000 time-use diaries of the current German Time Budget Survey of 2001/2002.

Keywords

Timing of daily demand Consumer policy analysis by microsimulation Aging society Flexible working hours Public childcare support 

References

  1. Aleff, H.-J. (2002). Die Dimension Zeit im Dienstleistungsmarketing. Wiesbaden: Deutscher Universitätsverlag.Google Scholar
  2. Ashenfelter, O., & Card, D. (Eds.). (1999). Handbook of labor economics: 3A and 3B. Amsterdam: North-Holland.Google Scholar
  3. Ashenfelter, O., & Layard, R. (Eds.). (1987). Handbook of labor economics: 1 and 2. Amsterdam: North-Holland.Google Scholar
  4. Atkinson, A. B., & Sutherland, H. (Eds.). (1988). Tax-benefit models. London: Suntory-Toyota International Centre for Economics and Related Disciplines.Google Scholar
  5. Becker, G. S. (1965). A theory of the allocation of time. Economic Journal, 75, 493–517.CrossRefGoogle Scholar
  6. Brunner, J. K., & Petersen, H.-G. (Eds.). (1990). Simulation models in tax and transfer policy. Frankfurt/Main: Campus Verlag.Google Scholar
  7. Buslei, H., Schulz, E., & Steiner, V. (1997). Auswirkungen des demographischen Wandels auf die private Nachfrage nach Gütern und Dienstleistungen in Deutschland bis 2050. DIW Berlin: German Institut for Economic Research. DIW Politikberatung kompakt, No. 26.Google Scholar
  8. Callister, P., & Dixon, S. (2001). Work schedules and working at home—Insights for America from New Zealand time use data. Ithaca: Cornell University. Cornell Careers Institute Working Paper 01–13.Google Scholar
  9. Citro, C. F., & Hanushek, E. A. (Eds.). (1991a). Improving information for social policy decisions. The uses of microsimulation modeling: Review and recommendations. Vol. I. Washington: The National Academies Press.Google Scholar
  10. Citro, C. F., & Hanushek, E. A. (Eds.). (1991b). Improving information for social policy decisions. The uses of microsimulation modeling: Technical papers. Vol. II. Washington: The National Academies Press.Google Scholar
  11. Deutscher Bundestag. (2009). Bericht der Bundesregierung über den Stand des Ausbaus für ein bedarfsgerechtes Angebot an Kindertagesbetreuung für Kinder unter drei Jahren für das Berichtsjahr 2008. Berlin: Deutscher Bundestag. Drucksache 16/12268, 12.03.2009.Google Scholar
  12. Ehling, M. (1999). The German time use survey—Methods and results. In J. Merz & M. Ehling (Eds.), Time use—Research, data and policy (pp. 89–105). Baden-Baden: Nomos. Publications of the Research Institute on Professions (FFB) of the University of Lüneburg, Vol. 10.Google Scholar
  13. Ehling, M. (2004). Zeitbudgeterhebungen 1991/92 und 2001/02—Kontinuität und Wandel. In S. Bundesamt (Ed.), Alltag in Deutschland—Analysen zur Zeitverwendung (pp. 10–22). Wiesbaden: Statistisches Bundesamt.Google Scholar
  14. Ehrenberg, R., & Smith, R. (2002). Modern labor economics: Theory and public policy (8th ed.). Boston: Addison-Wesley.Google Scholar
  15. Ferris, J. (1990). Time, space and shopping: The regulation of shopping hours. Journal of Law Economics & Organization, 6(1), 171–187.Google Scholar
  16. Ferris, J. (1991). On the economics of regulated early closing hours: Some evidence from Canada. Applied Economics, 23, 1393–1400.CrossRefGoogle Scholar
  17. Gershuny, J. (2003). Changing times—Work and leisure in postindustrial society. Oxford: Oxford University Press.Google Scholar
  18. Gornick, J. C., & Meyers, M. K. (2003). Families that work: Policies for reconciling parenthood and employment. New York: Russell Sage Foundation.Google Scholar
  19. Gradus, R. (1996). The economic effects of extending shop opening hours. JEcon, 64, 247–263.Google Scholar
  20. Gronau, R. (1986). Home production—A survey. In O. Ashenfelter & R. Layard (Eds.), Handbook of labor economics (Vol. I, pp. 273–304). Amsterdam: North Holland.CrossRefGoogle Scholar
  21. Gupta, A., & Kapur, V. (Eds.). (2000). Microsimulation in government policy and forecasting. Amsterdam: North-Holland.Google Scholar
  22. Hall, R. E. (1988). Intertemporal substitution in consumption. Journal of Political Economy, 96, 339–357.CrossRefGoogle Scholar
  23. Hamermesh, D. (2002). Timing, togetherness and time windfalls. Journal of Population Economics, 15, 601–623.CrossRefGoogle Scholar
  24. Hancock, R., & Sutherland, H. (Eds.). (1992). Microsimulation models for public policy analysis: New frontiers. London: London School of Economics and Political Science. Suntory-Toyota International Centre for Economics and Related Disciplines.Google Scholar
  25. Harding, A. (Ed.). (1996). Microsimulation and public policy. Amsterdam: North-Holland.Google Scholar
  26. Harvey, A. (1999). Time use research: The roots to the future. In J. Merz & M. Ehling (Eds.), Time use—Research, data and policy (pp. 123–149). Baden-Baden: Nomos. FFB-Schriftenreihe Band 10.Google Scholar
  27. Harvey, A., Fisher, K., Gershuny, J., & Akbari, A. (2000). Examining working time arrangements using time use surveys. Essex: Institute for Social and Economic Research. ISER Working Paper No. 2000-22.Google Scholar
  28. Hofferth, S. L. (2009). Changes in American children’s time—1997 to 2003. International Journal of Time Use Research, 6(1), 26–47.Google Scholar
  29. Jacobsen, J., & Kooreman, P. (2004). Timing constraints and the allocation of time: The effect of the changing shopping hours regulations in the Netherlands. Bonn: Institute for the Study of Labor. IZA Discussion Paper No. 1309.Google Scholar
  30. Merz, J. (1980). Die Ausgaben privater Haushalte—Ein mikroökonometrisches Modell für die Bundesrepublik Deutschland. Frankfurt/New York: Campus.Google Scholar
  31. Merz, J. (1983a). Die konsistente Hochrechnung von Mikrodaten nach dem Prinzip des minimalen Informationsverlustes. Allgemeines Statistisches Archiv, 67(4), 342–366.Google Scholar
  32. Merz, J. (1983b). FELES: The Functionalized Extended Linear Expenditure System—theory, estimation procedures and application to individual household consumption expenditures involving socioeconomic and sociodemographic characteristics. European Economic Review, 23, 359–394.CrossRefGoogle Scholar
  33. Merz, J. (1985). Ein modifiziertes Newton-Verfahren zur Lösung des Hochrechnungsproblems nach dem Prinzip des minimalen Informationsverlustes. Computing, 35, 51–61.CrossRefGoogle Scholar
  34. Merz, J. (1991). Microsimulation—a survey of principles, developments and applications. International Journal of Forecasting, 7, 77–104.CrossRefGoogle Scholar
  35. Merz, J. (1994). Microdata adjustment by the minimum information loss principle. Lüneburg: Universität Lüneburg, Forschungsinstitut Freie Berufe. FFB Discussion Paper No. 10.Google Scholar
  36. Merz, J. (2002a). Time use research and time use data—actual topics and new frontiers. In M. Ehling & J. Merz (Eds.), Neue Technologien in der Umfrageforschung—Anwendungen bei der Erhebung von Zeitverwendung (pp. 3–19). Baden-Baden: Nomos.Google Scholar
  37. Merz, J. (2002b). Time and economic well-being—a panel analysis of desired vs. actual working hours. Review of Income and Wealth, 48(3), 317–346.CrossRefGoogle Scholar
  38. Merz, J. (2009). Time use and time budgets–Improvements, future challenges and recommendations. Lüneburg: Universität Lüneburg, Forschungsinstitut Freie Berufe. FFB Discussion Paper No. 78.Google Scholar
  39. Merz, J., & Böhm, P. (2005). Arbeitszeitarrangements und Entlohnung—Ein Treatment-Effects-Ansatz für Freiberufler, Unternehmer und abhängig Beschäftigte. In R. Schulte (Ed.), Ergebnisse der MittelstandsForschung (pp. 237–264). Münster: Lit-Verlag.Google Scholar
  40. Merz, J., & Böhm, P. (2008). Tägliche Arbeitszeitmuster und Einkommen von Freien Berufen—Neue Ergebnisse auf der Basis von Zeittagebüchern. In J. Merz (Ed.), Freie Berufe—Einkommen und Steuern (FB€St)—Beiträge aus Wissenschaft und Praxis (pp. 93–118). Baden-Baden: Nomos. FFB-Schriftenreihe Band 16.Google Scholar
  41. Merz, J., & Burgert, D. (2004). Arbeitszeitarrangements—Neue Ergebnisse aus der Zeitbudgeterhebung 2001/02 im Zeitvergleich zu 1991/92. In S. Bundesamt (Ed.), Alltag in Deutschland—Analysen zur Zeitverwendung (pp. 304–336). Wiesbaden: Statistisches Bundesamt.Google Scholar
  42. Merz, J., & Ehling, M. (Eds.). (1999). Time use—Research, data and policy. Baden-Baden: Nomos. FFB-Schriftenreihe Band 10.Google Scholar
  43. Merz, J., & Stolze, H. (2007). ADJUST for Windows—A software package to achieve representative microdata by the minimum information loss principle. Lüneburg: University of Lüneburg, Forschungsinstitut Freie Berufe. FFB Discussion Paper No. 70. Available at: http://ffb.uni-lueneburg.de/adjust.Google Scholar
  44. Merz, J., & Stolze, H. (2008). Representative time use data and new harmonised calibration of the American heritage time use data (AHTUD) 1965–1999. Electronic International Journal of Time Use Research, 5(1), 90–126.Google Scholar
  45. Merz, J., Hanglberger, D., & Rucha, R. (2009). The timing of daily demand for goods and services—Multivariate probit estimates and microsimulation results for an aged population with German time use diary data. Lüneburg: Universität Lüneburg, Forschungsinstitut Freie Berufe. FFB Discussion Paper No. 77.Google Scholar
  46. Mitton, L., Sutherland, H., & Weeks, M. (Eds.). (2000). Microsimulation modelling for policy analysis. Cambridge: Cambridge University Press.Google Scholar
  47. Müller, S. (1995). Die Zeit als Hintergrundvariable im Konsumentenverhalten–dargestellt anhand einer empirischen Untersuchung mit computergestützter Auswertung zum Lebensmittel-und Bekleidungskauf. Bergisch Gladbach: Eul.Google Scholar
  48. Orcutt, G. (1957). A new type of socio-economic systems. The Review of Economics and Statistics, 58, 773–797.Google Scholar
  49. Orcutt, G., Caldwell, S., & Wertheimer, R., II. (1976). Policy exploration through microanalytic simulation. Washington: The Urban Institute.Google Scholar
  50. Orcutt, G., Merz, J., & Quinke, H. (Eds.). (1986). Microanalytic simulation models to support social and financial policy. Amsterdam: North Holland.Google Scholar
  51. Pierenkemper, T. (2009). The rise and fall of the “Normalarbeitsverhältnis” in Germany. Bonn: Institute for the Study of Labor. IZA Discussion Paper No. 4068.Google Scholar
  52. Pollak, R. A., & Wales, T. J. (1992). Demand system specification and estimation. Oxford: Oxford University Press.Google Scholar
  53. Schäffer, S. (2003). Die Zeitverwendung von Konsumenten–Implikationen für das Dienstleistungs-marketing. Wiesbaden: Deutscher Universitäts-Verlag.Google Scholar
  54. Skuterud, M. (2005). The impact of Sunday shopping on employment and hours of work in the retail industry: Evidence from Canada. European Economic Review, 49, 1953–1978.CrossRefGoogle Scholar
  55. Spahn, P., Galler, H., Kaiser, H., Kassella, T., & Merz, J. (1992). Mikrosimulation in der Steuerpolitik. Physica: Heidelberg.Google Scholar
  56. Statistisches Bundesamt. (2009). Niedrigeinkommen und Erwerbstätigkeit. Begleitmaterial zum Pressegespräch vom 19.8.2009. Wiesbaden: Statistisches Bundesamt.Google Scholar
  57. Statistisches Bundesamt (o.J.). Die Zeitbudgeterhebung 2001/02. Wiesbaden: Statistisches Bundesamt.Google Scholar
  58. Sullivan, O., & Gershuny, J. (2004). Inconspicuous consumption: Work-rich, time-poor in the liberal market economy. Journal of Consumer Culture, 4(1), 79–100.CrossRefGoogle Scholar
  59. Täger, U. C. (2003). Der deutsche Ladenschluss—und wieder kein endgültiges Ende? ifo Schnelldienst, 56(3), 8–10.Google Scholar
  60. Zaidi, A., Harding, A., & Williamson, P. (Eds.). (2009). New frontiers in microsimulation modelling. Surrey: Ashgate.Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Joachim Merz
    • 1
  • Dominik Hanglberger
    • 1
  • Rafael Rucha
    • 1
  1. 1.Research Institute on Professions (Forschungsinstitut Freie Berufe, FFB), Faculty II-Economic, Behavioural and Law SciencesLeuphana University of LueneburgLueneburgGermany

Personalised recommendations