Advertisement

Constraints

, Volume 23, Issue 2, pp 172–195 | Cite as

Constraint programming and operations research

  • J. N. Hooker
  • W.-J. van Hoeve
Article
Part of the following topical collections:
  1. Topical Collection on 20th Anniversary Issue

Abstract

We present an overview of the integration of constraint programming (CP) and operations research (OR) to solve combinatorial optimization problems. We interpret CP and OR as relying on a common primal-dual solution approach that provides the basis for integration using four main strategies. The first strategy tightly interweaves propagation from CP and relaxation from OR in a single solver. The second applies OR techniques to domain filtering in CP. The third decomposes the problem into a portion solved by CP and a portion solved by OR, using CP-based column generation or logic-based Benders decomposition. The fourth uses relaxed decision diagrams developed for CP propagation to help solve dynamic programming models in OR. The paper cites a significant fraction of the literature on CP/OR integration and concludes with future perspectives.

Keywords

Constraint programming Operations research Hybrid optimization 

References

  1. 1.
    Achterberg, T. (2008). SCIP: Solving constraint integer programs. Mathematical Programming Computation, 1, 1–41.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Achterberg, T., Berthold, T., Koch, T., & Wolter, K. (2008). A new approach to integrate CP and MIP. In Perron, L., & Trick, M.A. (Eds.) CPAIOR Proceedings, Lecture Notes in Computer Science, vol. 5015, pp. 6–20. Springer.Google Scholar
  3. 3.
    Aggoun, A., & Beldiceanu, N. (1993). Extending CHIP in order to solve complex scheduling and placement problems. Mathematical and Computer Modelling, 17, 57–73.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Ahuja, R.K., Magnanti, T.L., & Orlin, J.B. (1993). Linear Programming and Network Flows, 3rd edn. Upper Saddle River: Prentice-Hall.zbMATHGoogle Scholar
  5. 5.
    Akers, S.B. (1978). Binary decision diagrams. IEEE Transactions on Computers, C-27, 509–516.zbMATHCrossRefGoogle Scholar
  6. 6.
    Althaus, E., Bockmayr, A., Elf, M., Kasper, T., Jüenger, M., & Mehlhorn, K. (2002). SCIL—Symbolic constraints in integer linear programming. In 10th European symposium on Algorithms (ESA 2002), Lecture Notes in Computer Science, vol. 2461, pp. 75–87. Springer.Google Scholar
  7. 7.
    Andersen, H.R. (1997). An introduction to binary decision diagrams. Lecture notes, available online. Copenhagen: IT University of Copenhagen.Google Scholar
  8. 8.
    Andersen, H.R. (2007). A constraint store based on multivalued decision diagrams. In Hadžić, T., Hooker, J.N., Tiedemann, P., & Bessiere, C. (Eds.) Principles and Practice of Constraint Programming (CP 2007), Lecture Notes in Computer Science, vol. 4741, pp. 118–132. Springer.Google Scholar
  9. 9.
    Appa, G., Magos, D., & Mourtos, I. (2010). A polyhedral approach to the alldifferent system. Mathematical Programming, 124, 1–52.MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Appa, G., Mourtos, I., & Magos, D. (2002). Integrating constraint and integer programming for the orthogonal Latin squares problem. In Van Hentenryck, P. (Ed.) Principles and Practice of Constraint Programming (CP 2002), Lecture Notes in Computer Science, vol. 2470, pp. 17–32. Springer.Google Scholar
  11. 11.
    Aron, I., Hooker, J.N., & Yunes, T.H. (2004). SIMPL: A system for integrating optimization techniques. In Régin, J.C., & Rueher, M. (Eds.) CPAIOR Proceedings, Lecture Notes in Computer Science, vol. 3011, pp. 21–36. Springer.Google Scholar
  12. 12.
    Artigues, C., Gendreau, M., Rousseau, L.M., & Vergnaud, A. (2009). Solving an integrated employee timetabling and job-shop scheduling problem via hybrid branch-and-bound. Computers & Operations Research, 36, 2330–2340.zbMATHCrossRefGoogle Scholar
  13. 13.
    Bacchus, F., Dalmao, S., & Pitassi, T. (2014). Relaxation search: A simple way of managing optional clauses. In AAAI Conference on Artificial Intelligence, pp. 835–841.Google Scholar
  14. 14.
    Bajestani, M.A., & Beck, J.C. (2013). Scheduling a dynamic aircraft repair shop with limited repair resources. Journal of Artificial Intelligence Research, 47, 35–70.MathSciNetzbMATHGoogle Scholar
  15. 15.
    Bajgiran, O., Cire, A., & Rousseau, L.M. (2017). A first look at picking dual variables for maximizing reduced-cost based fixing. In Lombardi, M., & Salvagnin, D. (Eds.) CPAIOR Proceedings, Lecture Notes in Computer Science, vol. 10335, pp. 221–228. Springer.Google Scholar
  16. 16.
    Balas, E., Bockmayr, A., Pisaruk, N., & Wolsey, L. (2004). On unions and dominants of polytopes. Mathematical Programming, 99, 223–239.MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Baptiste, P., & Le Pape, C. (1996). Edge-finding constraint propagation algorithms for disjunctive and cumulative scheduling. In Proceedings of the Fifteenth Workshop of the U.K. Planning Special Interest Group. Liverpool, U.K.Google Scholar
  18. 18.
    Baptiste, P., Le Pape, C., & Nuijten, W. (2001). Constraint-based scheduling: applying constraint programming to scheduling problems. Dordrecht: Kluwer.zbMATHCrossRefGoogle Scholar
  19. 19.
    Barnhart, C., Johnson, E.L., Nemhauser, G.L., Savelsbergh, M.W.P., & Vance, P.H. (1998). Branch-and-price: Column generation for solving huge integer programs. Operations Research, 46, 316–329.MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Beame, P., Kautz, H., & Sabharwal, A. (2003). Understanding the power of clause learning. In International Joint Conference on Artificial Intelligence (IJCAI 2003).Google Scholar
  21. 21.
    Beaumont, N. (1990). An algorithm for disjunctive programs. European Journal of Operational Research, 48, 362–371.zbMATHCrossRefGoogle Scholar
  22. 22.
    Beck, J.C. (2010). Checking up on branch-and-check. In Cohen, D. (Ed.) Principle and Practice of Constraint Programming (CP), Lecture Notes in Computer Science, vol. 6308, pp. 84–98.Google Scholar
  23. 23.
    Beldiceanu, N., & Contejean, E. (1994). Introducing global constraints in CHIP. Mathematical and Computer Modelling, 12, 97–123.zbMATHCrossRefGoogle Scholar
  24. 24.
    Bellman, R. (1957). Dynamic programming. Princeton: Princeton University Press.zbMATHGoogle Scholar
  25. 25.
    Belov, G., Stuckey, P.J., Tack, G., & Wallace, M. (2016). Improved linearization of constraint programming models. In Proceedings of CP, Lecture Notes in Computer Science, vol. 9892, pp. 49–65. Springer.Google Scholar
  26. 26.
    Benchimol, P., van Hoeve, W.J., Régin, J.C., Rousseau, L.M., & Rueher, M. (2012). Improved filtering for weighted circuit constraints. Constraints, 17(3), 205–233.MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Benders, J.F. (1962). Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik, 4, 238–252.MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Benini, L., Bertozzi, D., Guerri, A., & Milano, M. (2005). Allocation and scheduling for MPSoCs via decomposition and no-good generation. In Principles and Practice of Constraint Programming (CP 2005), Lecture Notes in Computer Science, vol. 3709, pp. 107–121. Springer.Google Scholar
  29. 29.
    Benini, L., Lombardi, M., Mantovani, M., Milano, M., & Ruggiero, M. (2008). Multi-stage Benders decomposition for optimizing multicore architectures. In Perron, L., & Trick, M.A. (Eds.) CPAIOR Proceedings, Lecture Notes in Computer Science, vol. 5015, pp. 36–50. Springer.Google Scholar
  30. 30.
    Benoist, T., Laburthe, F., & Rottembourg, B. (2001). Lagrange relaxation and constraint programming collaborative schemes for traveling tournament problems. In Gervet, C., & Wallace, M. (Eds.) CPAIOR Proceedings. Ashford, U.K.Google Scholar
  31. 31.
    Bergman, D., & Cire, A.A. Discrete Nonlinear Optimization by State-Space Decompositions. Management Science (to appear).Google Scholar
  32. 32.
    Bergman, D., Cire, A.A., & van Hoeve, W.J. (2014). MDD Propagation for Sequence Constraints. JAIR, 50, 697–722.MathSciNetzbMATHGoogle Scholar
  33. 33.
    Bergman, D., Cire, A.A., & van Hoeve, W.J. (2015). Improved Constraint Propagation via Lagrangian Decomposition. In Proceedings of CP, Lecture Notes in Computer Science, vol. 9255, pp. 30–38. Springer.Google Scholar
  34. 34.
    Bergman, D., Cire, A.A., & van Hoeve, W.J. (2015). Lagrangian bounds from decision diagrams. Constraints, 20, 346–361.MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Bergman, D., Cire, A.A., van Hoeve, W.J., & Hooker, J.N. (2016). Decision Diagrams for Optimization. Berlin: Springer.Google Scholar
  36. 36.
    Bergman, D., Ciré, A.A., & van Hoeve, W.J. (2015). Lagrangian bounds from binary decision diagrams. Constraints, 20, 346–361.MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Bergman, D., Ciré, A.A., van Hoeve, W.J., & Hooker, J.N. (2013). Optimization bounds from binary decision diagrams. INFORMS Journal on Computing, 26, 253–268.MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Bergman, D., Ciré, A.A., van Hoeve, W.J., & Hooker, J.N. (2016). Discrete optimization with binary decision diagrams. INFORMS Journal on Computing, 28, 47–66.MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Bergman, D., Ciré, A.A., van Hoeve, W.J., & Hooker, J.N. (2017). Decision Diagrams for Optimization. Berlin: Springer.zbMATHGoogle Scholar
  40. 40.
    Bergman, D., & Hooker, J.N. (2012). Graph coloring facets from all-different systems. In Jussien, N., & Petit, T. (Eds.) CPAIOR Proceedings, pp. 50–65. Springer.Google Scholar
  41. 41.
    Bergman, D., & Hooker, J.N. (2014). Graph coloring inequalities for all-different systems. Constraints, 19, 404–433.MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Bergman, D., van Hoeve, W.J., & Hooker, J.N. (2011). Manipulating MDD relaxations for combinatorial optimization. In Achterberg, T., & Beck, J.C. (Eds.) CPAIOR Proceedings, Lecture Notes in Computer Science, vol. 6697, pp. 20–35. Springer.Google Scholar
  43. 43.
    Bockmayr, A., & Kasper, T. (1998). Branch-and-infer: A unifying framework for integer and finite domain constraint programming. INFORMS Journal on Computing, 10, 287–300.MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Bockmayr, A., & Pisaruk, N. (2003). Detecting infeasibility and generating cuts for mixed integer programming using constraint progrmaming. In Gendreau, M., Pesant, G., & Rousseau, L.M. (Eds.) CPAIOR Proceedings, Lecture Notes in Computer Science, vol. 1234. Springer.Google Scholar
  45. 45.
    Bockmayr, A., Pisaruk, N., & Aggoun, A. (2001). Network flow problems in constraint programming. In Walsh, T. (Ed.) Principles and Practice of Constraint Programming (CP 2001), Lecture Notes in Computer Science, vol. 2239, pp. 196–210. Springer.Google Scholar
  46. 46.
    Bollapragada, S., Ghattas, O., & Hooker, J.N. (2001). Optimal design of truss structures by mixed logical and linear programming. Operations Research, 49, 42–51.MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Borzabadi, A.H., & Sadjadi, M.E. (2009). Optimal control of hybrid systems by logic-based Benders decomposition. In Giua, A., Mahulea, C., Silva, M., & Zaytoon, J. (Eds.) Analysis and Design of Hybrid Systems, vol. 3, pp. 104–107.Google Scholar
  48. 48.
    Branch, S., Narodytska, N., Quimper, C.G., Stuckey, P., & Walsh, T. (2007). Encodings of the sequence constraint. In Bessiere, C. (Ed.) Principles and Practice of Constraint Programming (CP 2007), Lecture Notes in Computer Science, vol. 4741, pp. 210–224. Springer.Google Scholar
  49. 49.
    Brown, R.G., Chinneck, J.W., & Karam, G.M. (1989). Optimization with constraint programming systems. In R.S. et al. (Ed.) Impact of Recent Computer Advances on Operations Research, Publications in Operations Research Series, vol. 9, pp. 463–473. Elsevier, Williamsburg, VA.Google Scholar
  50. 50.
    Brucker, P., & Thiele, O. (1996). A branch and bound method for the general-shop problem with sequence-dependent setup times. OR Spektrum, 18, 145–161.MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Bryant, R.E. (1986). Graph-based algorithms for Boolean function manipulation. IEEE Transactions on Computers, C-35, 677–691.zbMATHCrossRefGoogle Scholar
  52. 52.
    Cambazard, H., & Fages, J.G. (2015). New filtering for AtMostNValue and its weighted variant: A Lagrangian approach. Constraints, 20, 362–380.MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Cambazard, H., Hladik, P.E., Déplanche, A.M., Jussien, N., & Trinquet, Y. (2004). Decomposition and learning for a hard real time task allocation problem. In Wallace, M. (Ed.) Principles and Practice of Constraint Programming (CP 2004), Lecture Notes in Computer Science, vol. 3258, pp. 153–167. Springer.Google Scholar
  54. 54.
    Cambazard, H., & Jussien, N. (2005). Identifying and exploiting problem structures using explanation-based costraint programming. In Barták, R., & Milano, M. (Eds.) CPAIOR Proceedings, Lecture Notes in Computer Science, vol. 3524, pp. 94–109. Springer.Google Scholar
  55. 55.
    Cambazard, H., O’Mahony, E., & O’Sullivan, B. (2010). Hybrid methods for the multileaf collimator sequencing problem. In Lodi, A., Milano, M., & Toth, P. (Eds.) CPAIOR Proceedings, Lecture Notes in Computer Science, vol. 6140, pp. 56–70. Springer.Google Scholar
  56. 56.
    Cambazard, H., & Penz, B. (2012). A Constraint Programming Approach for the Traveling Purchaser Problem. In Proceedings of CP, Lecture Notes in Computer Science, vol. 7514, pp. 735–749. Springer.Google Scholar
  57. 57.
    Capone, A., Carello, G., Filippini, I., Gualandi, S., & Malucelli, F. (2010). Solving a resource allocation problem in wireless mesh networks: A comparison between a cp-based and a classical column generation. Networks, 55(3), 221–233.MathSciNetzbMATHGoogle Scholar
  58. 58.
    Carlier, J. (1982). One machine problem. European Journal of Operational Research, 11, 42–47.MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    Carlier, J., & Pinson, E. (1989). An algorithm for solving the job-shop problem. Management Science, 35, 164–176.MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Carlier, J., & Pinson, E. (1990). A practical use of Jackson’s preemptive schedule for solving the job shop problem. Annals of Operations Research, 26, 269–287.MathSciNetzbMATHGoogle Scholar
  61. 61.
    Carlier, J., & Pinson, E. (1994). Adjustment of heads and tails for the job-shop problem. European Journal of Operational Research, 78, 146–161.zbMATHCrossRefGoogle Scholar
  62. 62.
    Caseau, Y., & Laburthe, F. (1994). Improved CLP scheduling with task intervals. In Proceedings of the Eleventh International Conference on Logic Programming (ICLP 1994), pp. 369–383. MIT Press.Google Scholar
  63. 63.
    Caseau, Y., & Laburthe, F. (1997). Solving small TSPs with constraints. In Naish, L. (Ed.) Proceedings, Fourteenth International Conference on Logic Programming (ICLP 1997), vol. 2833, pp. 316–330. The MIT Press.Google Scholar
  64. 64.
    Castro, P.M., & Grossmann, I.E. (2006). An efficient MILP model for the short-term scheduling of single stage batch plants. technical report, Departamento de Modelacão e Simulacão de Processos, INETI, Lisbon.Google Scholar
  65. 65.
    Çoban, E., & Hooker, J.N. (2013). Single-facility scheduling by logic-based benders decomposition. Annals of Operations Research, 210, 245–272.MathSciNetzbMATHCrossRefGoogle Scholar
  66. 66.
    Chabrier, A. (2000). A cooperative CP and LP optimizer approach for the pairing generation problem. In CPAIOR Proceedings. Ferrara, Italy.Google Scholar
  67. 67.
    Chabrier, A. (2003). Heuristic branch-and-price-and-cut to solve a network design problem. In Gendreau, M., Pesant, G., & Rousseau, L.M. (Eds.) CPAIOR Proceedings. Montréal.Google Scholar
  68. 68.
    Christofides, N., Mingozzi, A., & Toth, P. (1981). State-space relaxation procedures for the computation of bounds to routing problems. Networks, 11(2), 145–164.MathSciNetzbMATHCrossRefGoogle Scholar
  69. 69.
    Chu, G., Gange, G., & Stuckey, P.J. (2016). Lagrangian Decomposition via Sub-problem Search. In Proceedings of CPAIOR, Lecture Notes in Computer Science, vol. 9676, pp. 65–80. Springer.Google Scholar
  70. 70.
    Chu, Y., & Xia, Q. (2005). A hybrid algorithm for a class of resource-constrained scheduling problems. In Barták, R., & Milano, M. (Eds.) CPAIOR Proceedings, Lecture Notes in Computer Science, vol. 3524, pp. 110–124. Springer.Google Scholar
  71. 71.
    Chvátal, V. (1983). Linear Programming. W. H. New York: Freeman.zbMATHGoogle Scholar
  72. 72.
    Ciré, A.A., Çoban, E., & Hooker, J.N. (2013). Mixed integer programming vs logic-based Benders decomposition for planning and scheduling. In Gomes, C., & Sellmann, M. (Eds.) CPAIOR Proceedings, pp. 325–331.Google Scholar
  73. 73.
    Corréa, A.I., Langevin, A., & Rousseau, L.M. (2004). Dispatching and conflict-free routing of automated guided vehicles: A hybrid approach combining constraint programming and mixed integer programming. In Régin, J.C., & Rueher, M. (Eds.) CPAIOR Proceedings, Lecture Notes in Computer Science, vol. 3011, pp. 370–378. Springer.Google Scholar
  74. 74.
    Cortés, C.E., Gendreau, M., Rousseau, L.M., Souyris, S., & Weintraub, A. (2014). Branch-and-price and constraint programming for solving a real-life technician dispatching problem. European Journal of Operational Research, 238, 300–312.MathSciNetzbMATHCrossRefGoogle Scholar
  75. 75.
    Costa, M.C. (1994). Persistency in maximum cardinality bipartite matchings. Operations Research Letters, 15, 143–149.MathSciNetzbMATHCrossRefGoogle Scholar
  76. 76.
    Côté, J.F., Dell’Amico, M., & Iori, M. (2014). Combinatorial Benders cuts for the strip packing problem. Operations Research, 62, 643–661.MathSciNetzbMATHCrossRefGoogle Scholar
  77. 77.
    Cronholm, W., & Ajili, F. (2004). Strong cost-based filtering for Lagrange decomposition applied to network design. In Wallace, M. (Ed.) Principles and Practice of Constraint Programming (CP 2004), Lecture Notes in Computer Science, vol. 3258, pp. 726–730. Springer.Google Scholar
  78. 78.
    Davies, T.O., Gange, G., & Stuckey, P.J. (2017). Automatic logic-based Benders decomposition with mini-zinc. In 31st AAAI Conference on Artificial Intelligence (AAAI 2017), pp. 787–793.Google Scholar
  79. 79.
    Davies, T.O., Pearce, A.R., Stuckey, P.J., & Lipovetzky, N. (2015). Sequencing operator counts. In International Conference on Automated Planning and Scheduling (ICAPS), pp. 61–69.Google Scholar
  80. 80.
    Delorme, M., Iori, M., & Martello, S. (2017). Logic based Benders’ decomposition for orthogonal stock cutting problems=. Computers and Operations Research, 78, 290–298.MathSciNetCrossRefGoogle Scholar
  81. 81.
    Demassey, S., Artiques, C., & Michelon, P. (2002). A hybrid constraint propagation-cutting plane prtocedure for the RCPSP. In Jussien, N., & Laburthe, F. (Eds.) Proceedings of the International Workshop on Integration of Artificial Intelligence and Operations Research Techniques in Constraint Programming for Combinatorial Optimization Problems (CPAIOR 2002). Le Croisic, France.Google Scholar
  82. 82.
    Demassey, S., Pesant, G., & Rousseau, L.M. (2005). Constraint-programming based column generation for employee timetabling. In Barták, R., & Milano, M. (Eds.) Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems (CPAIOR 2005), Lecture Notes in Computer Science, vol. 3524, pp. 140–154. Springer.Google Scholar
  83. 83.
    Demassey, S., Pesant, G., & Rousseau, L.M. (2006). A Cost-Regular Based Hybrid Column Generation Approach. Constraints, 11(4), 315–333.MathSciNetzbMATHCrossRefGoogle Scholar
  84. 84.
    Dorndorf, U., Pesch, E., & Phan-Huy, T. (2001). Solving the open shop scheduling problem. Journal of Scheduling, 4, 157–174.MathSciNetzbMATHCrossRefGoogle Scholar
  85. 85.
    Doulabi, S.H.H., Rousseau, L.M., & Pesant, G. (2014). A Constraint Programming-Based Column Generation Approach for Operating Room Planning and Scheduling. In Proceedings of CPAIOR, Lecture Notes in Computer Science, vol. 8451, pp. 455–463. Springer.Google Scholar
  86. 86.
    Doulabi, S.H.H., Rousseau, L.M., & Pesant, G. (2016). A Constraint-Programming-Based Branch-and-Price-and-Cut Approach for Operating Room Planning and Scheduling. INFORMS Journal on Computing, 28, 432–448.MathSciNetzbMATHCrossRefGoogle Scholar
  87. 87.
    Downing, N., Feydy, T., & Stuckey, P.J. (2012). Explaining Flow-Based Propagation. In Proceedings of CPAIOR, Lecture Notes in Computer Science, vol. 7298, pp. 146–162. Springer.Google Scholar
  88. 88.
    Easton, K., Nemhauser, G., & Trick, M. (2001). The traveling tournament problem description and benchmarks. In Walsh, T. (Ed.) Principles and Practice of Constraint Programming (CP 2001), Lecture Notes in Computer Science, vol. 2239, pp. 580–584. Springer.Google Scholar
  89. 89.
    Easton, K., Nemhauser, G., & Trick, M. (2002). Solving the traveling tournament problem: A combined integer programming and constraint programming approach. In Proceedings of the International Conference on the Practice and Theory of Automated Timetabling (PATAT 2002).Google Scholar
  90. 90.
    Edis, E.B., & Oguz, C. (2011). Parallel Machine Scheduling with Additional Resources: A Lagrangian-Based Constraint Programming Approach. In Proceedings of CPAIOR, Lecture Notes in Computer Science, vol. 6697, pp. 92–98. Springer.Google Scholar
  91. 91.
    Emeretlis, A., Theodoridis, G., Alefragis, P., & Voros, N. (2015). Mapping DAGs on heterogeneous platforms using logic-based Benders decompostion. In IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp. 119–124. IEEE.Google Scholar
  92. 92.
    Erschler, J., Lopez, P., & Esquirol, P. (1992). Ordonnancement de tâches sous contraintes: Une approche énergétique. RAIRO Automatique, Productique. Informatique Industrielle, 26, 453–481.zbMATHGoogle Scholar
  93. 93.
    Erschler, J., Lopez, P., & Thuriot, C. (1991). Raisonnement temporel sous contraintes de ressource et problèmes d’ordonnancement. Revue d’Intelligence Artificielle, 5, 7–32.Google Scholar
  94. 94.
    Fahle, T., Junker, U., Karish, S.E., Kohn, N., Sellmann, M., & Vaaben, B. (2002). Constraint programming based column generation for crew assignment. Journal of Heuristics, 8, 59–81.zbMATHCrossRefGoogle Scholar
  95. 95.
    Fazel-Zarandi, M.M. (2012). Using logic-based Benders decomposition to solve the capacity- and distance-constrained plant location problem. INFORMS Journal on Computing, 24, 387–398.MathSciNetzbMATHCrossRefGoogle Scholar
  96. 96.
    Fazel-Zarandi, M.M., & Beck, J.C. (2009). Solving a location-allocation problem with logic-based Benders decomposition. In Gent, I.P. (Ed.) Principles and Practice of Constraint Programming (CP 2009), Lecture Notes in Computer Science, vol. 5732, pp. 344–351. New York: Springer.Google Scholar
  97. 97.
    Focacci, F., Lodi, A., & Milano, M. (1999). Cost-based domain filtering. In Jaffar, J. (Ed.) Principles and Practice of Constraint Programming (CP 1999), Lecture Notes in Computer Science, vol. 1713, pp. 189–203. Springer.Google Scholar
  98. 98.
    Focacci, F., Lodi, A., & Milano, M. (1999). Solving TSP with time windows with constraints. In International Conference on Logic Programming (ICLP 1999), pp. 515–529. MIT Press.Google Scholar
  99. 99.
    Focacci, F., Lodi, A., & Milano, M. (2000). Cutting planes in constraint programming: An hybrid approach. In Dechter, R. (Ed.) Principles and Practice of Constraint Programming (CP 2000), Lecture Notes in Computer Science, vol. 1894, pp. 187–201. Springer.Google Scholar
  100. 100.
    Focacci, F., Lodi, A., & Milano, M. (2002). A Hybrid Exact Algorithm for the TSPTW. INFORMS Journal on Computing, 14, 403–417.MathSciNetzbMATHCrossRefGoogle Scholar
  101. 101.
    Focacci, F., Lodi, A., & Milano, M. (2002). Embedding Relaxations in Global Constraints for Solving TSP and TSPTW. Annals of Mathematics and Artificial Intelligence, 34, 291–311.MathSciNetzbMATHCrossRefGoogle Scholar
  102. 102.
    Focacci, F., Lodi, A., & Milano, M. (2002). Optimization-Oriented Global Constraints. Constraints, 7, 351–365.MathSciNetzbMATHCrossRefGoogle Scholar
  103. 103.
    Focacci, F., & Nuijten, W.P.M. (2000). A constraint propagation algorithm for scheduling with sequence dependent setup times. In Junker, U., Karisch, S.E., & Tschöke, S. (Eds.) Proceedings of the International Workshop on Integration of Artificial Intelligence and Operations Research Techniques in Constraint Programming for Combintaorial Optimization Problems (CPAIOR 2000) (pp. 53–55). Germany: Paderborn.Google Scholar
  104. 104.
    Fontaine, D., Michel, L.D., & Hentenryck, P.V. (2014). Constraint-Based Lagrangian Relaxation. In Proceedings of CP, Lecture Notes in Computer Science, vol. 8656, pp. 324–339. Springer.Google Scholar
  105. 105.
    Gabteni, S., & Grönkvist, M. (2006). A Hybrid Column Generation and Constraint Programming Optimizer for the Tail Assignment Problem. In Proceedings of CPAIOR, Lecture Notes in Computer Science, vol. 3990, pp. 89–103. Springer.Google Scholar
  106. 106.
    Gabteni, S., & Grönkvist, M. (2009). Combining column generation and constraint programming to solve the tail assignment problem. Annals of Operations Research, 171(1), 61–76.MathSciNetzbMATHCrossRefGoogle Scholar
  107. 107.
    Garfinkel, R., & Nemhauser, G.L. (1970). Optimal political districting by implicit enumeration techniques. Management Science, 16, B495—B508.zbMATHCrossRefGoogle Scholar
  108. 108.
    Gaudin, E., Jussien, N., & Rochart, G. (2004). Implementing explained global constraints. In Proceedings of the CP’04 Workshop on Constraint Propagation and Implementation, pp. 61–76.Google Scholar
  109. 109.
    Gellermann, T., Sellmann, M., & Wright, R. (2005). Shorter-path constraints for the resource constrained shortest path problem. In Barták, R., & Milano, M. (Eds.) CPAIOR Proceedings, Lecture Notes in Computer Science, vol. 3524, pp. 201–216. Springer.Google Scholar
  110. 110.
    Gendron, B., Lebbah, H., & Pesant, G. (2005). Improving the cooperation between the master problem and the subproblem in constraint programming based column generation. In Barták, R., & Milano, M. (Eds.) CPAIOR Proceedings, Lecture Notes in Computer Science, vol. 3524, pp. 217–227. Springer.Google Scholar
  111. 111.
    German, G., Briant, O., Cambazard, H., & Jost, V. (2017). Arc consistency via linear programming. In Proceedings of CP, LNCS, vol. 10416, pp. 114–128. Springer.Google Scholar
  112. 112.
    Glover, F. (1967). Maximum matching in a convex bipartite graph. Naval Research Logistics Quarterly, 316, 313–316.zbMATHCrossRefGoogle Scholar
  113. 113.
    Gomes, C.P., & Sellmann, M. (Eds.). (2013). Decision diagrams and dynamic programming, Lecture Notes in Computer Science, Vol. 7874. Berlin: Springer.Google Scholar
  114. 114.
    Gong, J., Lee, E.E., Mitchell, J.E., & Wallace, W.A. (2009). Logic-based multiobjective optimization for restoration planning. In Chaovalitwongse, W., Furman, K.C., & Pardalos, P.M. (Eds.) Optimization and Logistics Challenges in the Enterprise, pp. 305–324. Springer.Google Scholar
  115. 115.
    Grönkvist, M. (2004). A constraint programming model for tail assignment. In Régin, J.C., & Rueher, M. (Eds.) CPAIOR Proceedings, Lecture Notes in Computer Science, vol. 3011, pp. 142–156. Springer.Google Scholar
  116. 116.
    Grönkvist, M. (2006). Accelerating column generation for aircraft scheduling using constraint propagation. Computers & Operations Research, 33(10), 2918–2934.zbMATHCrossRefGoogle Scholar
  117. 117.
    Grossmann, I.E., Hooker, J.N., Raman, R., & Yan, H. (1994). Logic cuts for processing networks with fixed charges. Computers and Operations Research, 21, 265–279.zbMATHCrossRefGoogle Scholar
  118. 118.
    Gu, H., Schutt, A., & Stuckey, P.J. (2013). A Lagrangian Relaxation Based Forward-Backward Improvement Heuristic for Maximising the Net Present Value of Resource-Constrained Projects. In Proceedings of CPAIOR, Lecture Notes in Computer Science, vol. 7874, pp. 340–346. Springer.Google Scholar
  119. 119.
    Gualandi, M. (2009). k-clustering minimum biclique completion via a hybrid CP and SDP approach. In van Hoeve, W.J., & Hooker, J.N. (Eds.) CPAIOR Proceedings, Lecture Notes in Computer Science, vol. 5547 (pp. 87–101). New York: Springer.Google Scholar
  120. 120.
    Gualandi, S., & Malucelli, F. (2012). Exact Solution of Graph Coloring Problems via Constraint Programming and Column Generation. INFORMS Journal on Computing, 24, 81–100.MathSciNetzbMATHCrossRefGoogle Scholar
  121. 121.
    Gualandi, S., & Malucelli, F. (2012). Resource Constrained Shortest Paths with a Super Additive Objective Function. In Proceedings of CP, Lecture Notes in Computer Science, vol. 7514, pp. 299–315. Springer.Google Scholar
  122. 122.
    Guignard, M., & Kim, S. (1987). Lagrangian Decomposition: A Model Yielding Stronger Lagrangian Bounds. Mathematical Programming, 39, 215–228.MathSciNetzbMATHCrossRefGoogle Scholar
  123. 123.
    Ha, M.H., Quimper, C.G., & Rousseau, L.M. (2015). General Bounding Mechanism for Constraint Programs. In Proceedings of CP, Lecture Notes in Computer Science, vol. 9255, pp. 158–172. Springer.Google Scholar
  124. 124.
    Hadžić, T., & Hooker, J.N. (2006). Discrete global optimization with binary decision diagrams. In Workshop on Global Optimization: Integrating Convexity, Optimization, Logic Programming, and Computational Algebraic Geometry (GICOLAG). Vienna.Google Scholar
  125. 125.
    Hadžić, T., & Hooker, J.N. (2006). Postoptimality analysis for integer programming using binary decision diagrams, presented at GICOLAG workshop (Global Optimization: Integrating Convexity, Optimization, Logic Programming, and Computational Algebraic Geometry), Vienna, Tech. rep., Carnegie Mellon University.Google Scholar
  126. 126.
    Hadžić, T., & Hooker, J.N. (2007). Cost-bounded binary decision diagrams for 0–1 programming. In van Hentemryck, P., & Wolsey, L. (Eds.) CPAIOR Proceedings, Lecture Notes in Computer Science, vol. 4510, pp. 332–345. Springer.Google Scholar
  127. 127.
    Hadžić, T., Hooker, J.N., & Tiedemann, P. (2008). Propagating separable inequalities in an MD store. In Perron, L., & Trick, M.A. (Eds.) CPAIOR Proceedings, Lecture Notes in Computer Science, vol. 5015, pp. 318–322. Springer.Google Scholar
  128. 128.
    Hamdi, I., & Loukil, T. (2013). Logic-based Benders decomposition to solve the permutation flowshop scheduling problem with time lags. In International Conference on Modeling, Simulation and Applied Optimization (ICMSAO), pp. 1–7. IEEE.Google Scholar
  129. 129.
    Harjunkoski, I., & Grossmann, I.E. (2002). Decomposition techniques for multistage scheduling problems using mixed-integer and constraint programming methods. Computers and Chemical Engineering, 26, 1533–1552.CrossRefGoogle Scholar
  130. 130.
    Heching, A., & Hooker, J.N. (2016). Scheduling home hospice care with logic-based Benders decomposition. In Quimper, C.G. (Ed.) CPAIOR Proceedings, Lecture Notes in Computer Science, vol. 9676, pp. 187–197. Springer.Google Scholar
  131. 131.
    Hellsten, L., Pesant, G., & van Beek, P. (2004). A domain consistency algorithm for the stretch constraint. In Wallace, M. (Ed.) Principles and Practice of Constraint Programming (CP 2004), Lecture Notes in Computer Science, vol. 3258, pp. 290–304. Springer.Google Scholar
  132. 132.
    Herbrard, E., O’Mahony, E., & O’Sullivan, B. (2010). A constraint integer programming approach for resource-constrained project scheduling. In Lodi, A., Milano, M., & Toth, P. (Eds.) CPAIOR Proceedings, Lecture Notes in Computer Science, vol. 6140, pp. 313–317. Springer.Google Scholar
  133. 133.
    Hladik, P.E., Cambazard, H., Déplanche, A.M., & Jussien, N. (2008). Solving a real-time allocation problem with constraint programming. Journal of Systems and Software, 81, 132–149.CrossRefGoogle Scholar
  134. 134.
    Hoda, S., van Hoeve, W.J., & Hooker, J.N. (2010). A systematic approach to MDD-based constraint programming. In Proceedings of the 16th International Conference on Principles and Practices of Constraint Programming, Lecture Notes in Computer Science. Springer.Google Scholar
  135. 135.
    van Hoeve, W.J. (2011). Over-Constrained Problems. In Hentenryck, P.V., & Milano, M. (Eds.) Hybrid Optimization: The Ten Years of CPAIOR, pp. 191–225. Springer.Google Scholar
  136. 136.
    van Hoeve, W.J., Gomes, C.P., Selman, B., & Lombardi, M. (2007). Optimal Multi-Agent Scheduling with Constraint Programming. In Proceedings of AAAI, pp. 1813–1818. AAAI Press.Google Scholar
  137. 137.
    van Hoeve, W.J., Pesant, G., & Rousseau, L.M. (2006). On Global Warming: Flow-Based Soft Global Constraints. Journal of Heuristics, 12, 347–373.zbMATHCrossRefGoogle Scholar
  138. 138.
    van Hoeve, W.J., Pesant, G., Rousseau, L.M., & Sabharwal, A. (2009). New Filtering Algorithms for Combinations of Among Constraints. Constraints, 14, 273–292.MathSciNetzbMATHCrossRefGoogle Scholar
  139. 139.
    Hooker, J.N. (1994). Logic-based methods for optimization. In Borning, A. (Ed.) Principles and Practice of Constraint Programming (CP 2002), Lecture Notes in Computer Science, vol. 874, pp. 336–349. Springer.Google Scholar
  140. 140.
    Hooker, J.N. (1995). Logic-based Benders decomposition. In INFORMS National Meeting (INFORMS 1995).Google Scholar
  141. 141.
    Hooker, J.N. (2000). Logic-based methods for optimization: combining optimization and constraint satisfaction. New York: Wiley.zbMATHCrossRefGoogle Scholar
  142. 142.
    Hooker, J.N. (2002). Logic, optimization and constraint programming. INFORMS Journal on Computing, 14, 295–321.MathSciNetzbMATHCrossRefGoogle Scholar
  143. 143.
    Hooker, J.N. (2003). A framework for integrating solution methods. In Bhargava, H.K., & Ye, M. (Eds.) Computational Modeling and Problem Solving in the Networked World (Proceedings of ICS2003), pp. 3–30. Kluwer.Google Scholar
  144. 144.
    Hooker, J.N. (2005). A hybrid method for planning and scheduling. Constraints, 10, 385–401.MathSciNetzbMATHCrossRefGoogle Scholar
  145. 145.
    Hooker, J.N. (2005). Planning and scheduling to minimize tardiness. In Principles and Practice of Constraint Programming (CP 2005), Lecture Notes in Computer Science, vol. 3709, pp. 314–327. Springer.Google Scholar
  146. 146.
    Hooker, J.N. (2006). An integrated method for planning and scheduling to minimize tardiness. Constraints, 11, 139–157.MathSciNetzbMATHCrossRefGoogle Scholar
  147. 147.
    Hooker, J.N. (2007). Integrated Methods for Optimization. Berlin: Springer.zbMATHGoogle Scholar
  148. 148.
    Hooker, J.N. (2007). Planning and scheduling by logic-based Benders decomposition. Operations Research, 55, 588–602.MathSciNetzbMATHCrossRefGoogle Scholar
  149. 149.
    Hooker, J.N. (2012). Integrated Methods for Optimization, 2nd ed. Berlin: Springer.Google Scholar
  150. 150.
    Hooker, J.N. (2016). Projection, consistency, and George Boole. Constraints, 21, 59–76.MathSciNetzbMATHCrossRefGoogle Scholar
  151. 151.
    Hooker, J.N. (2016). Projection, inference and consistency. In IJCAI 2016 Proceedings, pp. 4175–4179.Google Scholar
  152. 152.
    Hooker, J.N., & Osorio, M.A. (1999). Mixed logical/linear programming. Discrete Applied Mathematics, 96–97, 395–442.MathSciNetzbMATHCrossRefGoogle Scholar
  153. 153.
    Hooker, J.N., & Ottosson, G. (2003). Logic-based Benders decomposition. Mathematical Programming, 96, 33–60.MathSciNetzbMATHCrossRefGoogle Scholar
  154. 154.
    Hooker, J.N., Ottosson, G., Thorsteinsson, E.S., & Kim, H.J. (2000). A scheme for unifying optimization and constraint satisfaction methods. Knowledge Engineering Review, 15, 11–30.CrossRefGoogle Scholar
  155. 155.
    Hopcroft, J.E., & Karp, R.M. (1973). A n 5/2 algorithm for maximum matchings in bipartite graphs. SIAM Journal on Computing, 2, 225–231.MathSciNetzbMATHCrossRefGoogle Scholar
  156. 156.
    Jain, V., & Grossmann, I.E. (2001). Algorithms for hybrid MILP/CP models for a class of optimization problems. INFORMS Journal on Computing, 13, 258–276.MathSciNetzbMATHCrossRefGoogle Scholar
  157. 157.
    Junker, U., Karish, S.E., Kohl, N., Vaaben, B., Fahle, T., & Sellmann, M. (1999). A framework for constraint programming based column generation. In Jaffar, J. (Ed.) Principles and Practice of Constraint Programming (CP 1999), Lecture Notes in Computer Science, vol. 1713, pp. 261–275. Springer.Google Scholar
  158. 158.
    Jussien, N. (2003). The versatility of using explanations within constraint programming. Research report. France: École des Mines de Nantes.Google Scholar
  159. 159.
    Jussien, N., & Barichard, V. (2000). The PaLM system: Explanation-based constraint programming. In Proceedings of TRICS: Techniques foR Implementing Constraint programming Systems, a post-conference workshop of CP 2000, pp. 118–133.Google Scholar
  160. 160.
    Jussien, N., & Ouis, S. (2001). User-friendly explanations for constraint programming. In Eleventh Workshop on Logic Programming environments (WLPE 2001). Cyprus: Paphos.Google Scholar
  161. 161.
    Katriel, I., & Thiel, S. (2003). Fast bound consistency for the global cardinality constraint. In Rossi, F. (Ed.) Principles and Practice of Constraint Programming (CP 2003), Lecture Notes in Computer Science, vol. 2833, pp. 437–451. Springer.Google Scholar
  162. 162.
    Khemmoudj, M.O., Bennaceur, H., & Nagih, A. (2005). Combining arc consistency and dual Lagrangean relaxation for filtering CSPs. In Barták, R., & Milano, M. (Eds.) Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems (CPAIOR 2005), Lecture Notes in Computer Science, vol. 3524, pp. 258–272. Springer.Google Scholar
  163. 163.
    Kim, H.J., & Hooker, J.N. (2002). Solving fixed-charge network flow problems with a hybrid optimization and constraint programming approach. Annals of Operations Research, 115, 95–124.MathSciNetzbMATHCrossRefGoogle Scholar
  164. 164.
    Kinable, J., Cire, A.A., & van Hoeve, W.J. (2017). Hybrid optimization methods for time-dependent sequencing problems. European Journal of Operational Research, 259, 887–897.MathSciNetzbMATHCrossRefGoogle Scholar
  165. 165.
    Kinable, J., & Trick, M. (2014). A logic-based Benders approach to the concrete delivery problem. In Simonis, H. (Ed.) CPAIOR Proceedings, Lecture Notes in Computer Science, vol. 8451, pp. 176–192. Springer.Google Scholar
  166. 166.
    Kohl, N. (2000). Application of or and cp techniques in a real world crew scheduling system. In Proceedings of the International Workshop on Integration of Artificial Intelligence and Operations Research Techniques in Constraint Programming for Combinatorial Optimization Problems (CPAIOR 2000). Germany: Paderborn.Google Scholar
  167. 167.
    Laborie, P., & Rogerie, J. (2016). Temporal linear relaxation in IBM ILOG CP Optimizer. J. Scheduling, 19(4), 391–400.MathSciNetzbMATHCrossRefGoogle Scholar
  168. 168.
    Lauriėre, J.L. (1978). A language and a program for stating and solving combinatorial problems. Artificial Intelligence, 10, 29–127.MathSciNetzbMATHCrossRefGoogle Scholar
  169. 169.
    Lam, E., & Van Hentenryck, P. (2016). A branch-and-price-and-check model for the vehicle routing problem with location congestion. Constraints, 21(3), 394–412.MathSciNetzbMATHCrossRefGoogle Scholar
  170. 170.
    Lam, E., & Van Hentenryck, P. (2017). Branch-and-check with explanations for the vehicle routing problem with time windows. In J. C. Beck (Ed.) Proceedings of the 23rd International Conference on Principles and Practice of Constraint Programming CP 2017, August 28 - September 1. Melbourne, VIC, Australia (pp. 579–595).Google Scholar
  171. 171.
    Lee, J., & Leung, K. (2009). Towards Efficient Consistency Enforcement for Global Constraints in Weighted Constraint Satisfaction. In Proceedings of IJCAI, pp. 559–565.Google Scholar
  172. 172.
    Little, J., & Darby-Dowman, K. (1995). The significance of constraint logic programming to operational research. In Lawrence, M., & Wilsden, C. (Eds.) Operational Research Tutorial Papers (Invited tutorial paper to the Operational Research Society Conference, 1995), pp. 20–45.Google Scholar
  173. 173.
    Liu, W., Yuan, M., He, X., Gu, Z., & Liu, X. (2008). Efficient SAT-based mapping and scheduling of homogeneous synchronous dataflow graphs for throughput optimization. In Real-Time Systems Symposium, pp. 492–504. IEEE.Google Scholar
  174. 174.
    Lombardi, M., & Gualandi, S. (2013). A New Propagator for Two-Layer Neural Networks in Empirical Model Learning. In Proceedings of CP, Lecture Notes in Computer Science, vol. 8124, pp. 448–463. Springer.Google Scholar
  175. 175.
    Lombardi, M., & Gualandi, S. (2016). A lagrangian propagator for artificial neural networks in constraint programming. Constraints, 21, 435–462.MathSciNetzbMATHCrossRefGoogle Scholar
  176. 176.
    Lombardi, M., Milano, M., Ruggiero, M., & Benini, L. (2010). Stochastic allocation and scheduling for conditional task graphs in multi-processor systems-on-chip. Journal of Scheduling, 13, 315–345.MathSciNetzbMATHCrossRefGoogle Scholar
  177. 177.
    Lovász, L., & Plummer, M. (1986). Matching Theory, Vol. 29. North-Holland: Annals of discrete Mathematics.Google Scholar
  178. 178.
    Maher, M.J. (2009). SOGgy Constraints: Soft Open Global Constraints. In Proceedings of CP, Lecture Notes in Computer Science, vol. 5732, pp. 584–591. Springer.Google Scholar
  179. 179.
    Maher, M.J., Narodytska, N., Quimper, C.G., & Walsh, T. (2008). Flow-based propagators for the SEQUENCE and related global constraints. In Stuckey, P.J. (Ed.) Principles and Practice of Constraint Programming (CP 2008), Lecture Notes in Computer Science, vol. 5202, pp. 159–174. Springer.Google Scholar
  180. 180.
    Maravelias, C.T., & Grossmann, I.E. (2004). Using MILP and CP for the scheduling of batch chemical processes. In Régin, J.C., & Rueher, M. (Eds.) CPAIOR Proceedings, Lecture Notes in Computer Science, vol. 3011, pp. 1–20. Springer.Google Scholar
  181. 181.
    Mehlhorn, K., & Thiel, S. (2000). Faster algorithms for bound-consistency of the sortedness and the alldifferent constraint. In Dechter, R. (Ed.) Principles and Practice of Constraint Programming (CP 2000), Lecture Notes in Computer Science, vol. 1894, pp. 306–319. Springer.Google Scholar
  182. 182.
    Menana, J., & Demassey, S. (2009). Sequencing and Counting with the multicost-regular Constraint. In Proceedings of CPAIOR, Lecture Notes in Computer Science, vol. 5547, pp. 178–192. Springer.Google Scholar
  183. 183.
    Métivier, J.P., Boizumault, P., & Loudni, S. (2007). Σ-AllDifferent: Softening AllDifferent in Weighted CSPs. In Proceedings of the 19th IEEE International Conference on Tools with Artificial Intelligence (ICTAI), pp. 223–230. IEEE.Google Scholar
  184. 184.
    Métivier, J.P., Boizumault, P., & Loudni, S. (2009). Softening Gcc and Regular with preferences. In Proceedings of the 2009 ACM symposium on Applied Computing (SAC), pp. 1392–1396. ACM.Google Scholar
  185. 185.
    Métivier, J.P., Boizumault, P., & Loudni, S. (2009). Solving Nurse Rostering Problems Using Soft Global Constraints. In Proceedings of CP, Lecture Notes in Computer Science, vol. 5732, pp. 73–87. Springer.Google Scholar
  186. 186.
    Milano, M., & van Hoeve, W.J. (2002). Reduced cost-based ranking for generating promising subproblems. In Van Hentenryck, P. (Ed.) Principles and Practice of Constraint Programming (CP 2002), Lecture Notes in Computer Science, vol. 2470, pp. 1–16. Springer.Google Scholar
  187. 187.
    Mingozzi, A. (2002). State space relaxation and search strategies in dynamic programming. In Proceedings of Abstraction, Reformulation, and Approximation, Lecture Notes in Computer Science, vol. 2371, pp. 51–51. Springer.Google Scholar
  188. 188.
    Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., & Tack, G. (2007). Minizinc: Towards a standard CP modelling language. In Bessiere, C. (Ed.) Principles and Practice of Constraint Programming (CP 2007), Lecture Notes in Computer Science, vol. 4741, pp. 529–543. Springer.Google Scholar
  189. 189.
    Nightingale, P., Akgün, Ȯ., Gent, I.P., Jefferson, C., Miguel, I., & Spracklen, P. (2017). Automatically improving constraint models in Savile Row. Artificial Intelligence, 251, 35–61.MathSciNetzbMATHCrossRefGoogle Scholar
  190. 190.
    Nuijten, W.P.M. (1994). Time and resource constrained scheduling. Ph.D. thesis. Eindhoven: Eindhoven University of Technology.Google Scholar
  191. 191.
    Nuijten, W.P.M., & Aarts, E.H.L. (1994). Constraint satisfaction for multiple capacitated job shop scheduling. In Cohn, A. (Ed.) Proceedings of the 11th European Conference on Artificial Intelligence (ECAI 1994), pp. 635–639. Wiley.Google Scholar
  192. 192.
    Nuijten, W.P.M., & Aarts, E.H.L. (1996). A computational study of constraint satisfaction for multiple capacitated job shop scheduling. European Journal of Operational Research, 90, 269–284.zbMATHCrossRefGoogle Scholar
  193. 193.
    Nuijten, W.P.M., Aarts, E.H.L., van Erp Taalman Kip, D.A.A., & van Hee, K.M. (1993). Randomized constraint satisfaction for job-shop scheduling. In AAAI-SIGMAN Workshop on Knowledge-Based Production Planning, Scheduling and Control.Google Scholar
  194. 194.
    Osorio, M., & Glover, F. (2001). Logic cuts using surrogate constraint analysis in the multidimensional knapsack problem. In Gervet, C., & Wallace, M. (Eds.) Proceedings of the International Workshop on Integration of Artificial Intelligence and Operations Research Techniques in Constraint Programming for Combintaorial Optimization Problems (CPAIOR 2001). Ashford, U.K.Google Scholar
  195. 195.
    Ottosson, G., Thorsteinsson, E., & Hooker, J.N. (1999). Mixed global constraints and inference in hybrid IP-CLP solvers. In Proceedings of CP99 Post-Conference Workshop on Large-Scale Combinatorial Optimization and Constraints. http://www.dash.co.uk/wscp99 (pp. 57–78).
  196. 196.
    Ottosson, G., Thorsteinsson, E., & Hooker, J.N. (2002). Mixed global constraints and inference in hybrid CLP-IP solvers. Annals of Mathematics and Artificial Intelligence, 34, 271–290.MathSciNetzbMATHCrossRefGoogle Scholar
  197. 197.
    Perez, G., & Régin, J.C. (2015). Efficient operations on mdds for building constraint programming models. In Proceedings of IJCAI, pp. 374–380.Google Scholar
  198. 198.
    Perez, G., & Régin, J.C. (2016). Constructions and in-place operations for mdds based constraints. In Proceedings of CPAIOR, LNCS, vol. 9676, pp. 279–293. Springer.Google Scholar
  199. 199.
    Perez, G., & Régin, J.C. (2017). MDDs are Efficient Modeling Tools: An Application to Some Statistical Constraints. In Proceedings of CPAIOR, LNCS, vol. 10335, pp. 30–40. Springer.Google Scholar
  200. 200.
    Pesant, G. (2001). A filtering algorithm for the stretch constraint. In Walsh, T. (Ed.) Principles and Practice of Constraint Programming (CP 2001), Lecture Notes in Computer Science, vol. 2239, pp. 183–195. Springer.Google Scholar
  201. 201.
    Pesant, G. (2004). A regular language membership constraint for finite sequences of variables. In Wallace, M. (Ed.) Principles and Practice of Constraint Programming (CP 2004), Lecture Notes in Computer Science, vol. 3258, pp. 482–495. Springer.Google Scholar
  202. 202.
    Pisinger, D., & Sigurd, M. (2007). Using Decomposition Techniques and Constraint Programming for Solving the Two-Dimensional Bin-Packing Problem. INFORMS Journal on Computing, 19, 36–51.MathSciNetzbMATHCrossRefGoogle Scholar
  203. 203.
    Powell, W.B. (2007). Approximate Dynamic Programming: Solving the Curses of Dimensionality (Wiley Series in Probability and Statistics). New York: Wiley-Interscience.CrossRefGoogle Scholar
  204. 204.
    Quadrifoglio, L., Dessouky, M.M., & Nez, F.O. (2008). Mobility allowance shuttle transit (MAST) services: MIP formulation and strengthenining with logic constraints. In Perron, L., & Trick, M.A. (Eds.) CPAIOR Proceedings, Lecture Notes in Computer Science, vol. 5015, pp. 387–391. Springer.Google Scholar
  205. 205.
    Rasmussen, R., & Trick, M.A. (2007). A Benders approach to the constrained minimum break problem. European Journal of Operational Research, 177, 198–213.MathSciNetzbMATHCrossRefGoogle Scholar
  206. 206.
    Refalo, P. (1999). Tight cooperation and its application in piecewise linear optimization. In Jaffar, J. (Ed.) Principles and Practice of Constraint Programming (CP 1999), Lecture Notes in Computer Science, vol. 1713, pp. 375–389. Springer.Google Scholar
  207. 207.
    Refalo, P. (2000). Linear formulation of constraint programming models and hybrid solvers. In Dechter, R. (Ed.) Principles and Practice of Constraint Programming (CP 2000), Lecture Notes in Computer Science, vol. 1894, pp. 369–383. Springer.Google Scholar
  208. 208.
    Régin, J.C. (1994). A filtering algorithm for constraints of difference in CSP. In National Conference on Artificial Intelligence (AAAI 1994), pp. 362–367. AAAI Press.Google Scholar
  209. 209.
    Régin, J.C. (1996). Generalized arc consistency for global cardinality constraint. In National Conference on Artificial Intelligence (AAAI 1996), pp. 209–215. AAAI Press.Google Scholar
  210. 210.
    Régin, J.C. (1999). Arc Consistency for Global Cardinality Constraints with Costs. In Proceedings of CP, Lecture Notes in Computer Science, vol. 1713, pp. 390–404. Springer.Google Scholar
  211. 211.
    Régin, J.C. (2002). Cost-Based Arc Consistency for Global Cardinality Constraints. Constraints, 7, 387–405.MathSciNetzbMATHCrossRefGoogle Scholar
  212. 212.
    Riedler, M., & Raidl, G. (2016). Solving a selective dial-a-ride problem with logic-based Benders decomposition. Technical report AC-TR-16-007. TU Wien: Institute of Computer Graphics and Algorithms.Google Scholar
  213. 213.
    Rodošek, R., Wallace, M., & Hajian, M. (1999). A new approach to integrating mixed integer programming and constraint logic programming. Annals of Operations Research, 86, 63–87.MathSciNetzbMATHCrossRefGoogle Scholar
  214. 214.
    Rousseau, L.M. (2004). Stabilization issues for constraint programming based column generation. In Régin, J.C., & Rueher, M. (Eds.) CPAIOR Proceedings, Lecture Notes in Computer Science, vol. 3011, pp. 402–408. Springer.Google Scholar
  215. 215.
    Rousseau, L.M., Gendreau, M., & Pesant, G. (2002). Solving small VRPTWs with constraint programming based column generation. In Jussien, N., & Laburthe, F. (Eds.) Proceedings of the International Workshop on Integration of Artificial Intelligence and Operations Research Techniques in Constraint Programming for Combintaorial Optimization Problems (CPAIOR 2002). France: Le Croisic.Google Scholar
  216. 216.
    Rousseau, L.M., Gendreau, M., Pesant, G., & Focacci, F. (2004). Solving VRPTWs with Constraint Programming Based Column Generation. Annals of Operations Research, 130(1–4), 199–216.MathSciNetzbMATHCrossRefGoogle Scholar
  217. 217.
    Ruggiero, M., Guerri, A., Bertozzi, D., Poletti, F., & Milano, M. (2006). Communication-aware allocation and scheduling framework for stream-oriented multi-processor systems-on-chip. In Proceedings of the Conference on Design, Automation and Test in Europe, pp. 3–8. European Design and Automation Association.Google Scholar
  218. 218.
    Sadykov, R. (2004). A hybrid branch-and-cut algorithm for the one-machine scheduling problem. In Régin, J.C., & Rueher, M. (Eds.) CPAIOR Proceedings, Lecture Notes in Computer Science, vol. 3011, pp. 409–415. Springer.Google Scholar
  219. 219.
    Sadykov, R., & Wolsey, L.A. (2006). Integer Programming and Constraint Programming in Solving a Multimachine Assignment Scheduling Problem with Deadlines and Release Dates. INFORMS Journal on Computing, 18, 209–217.MathSciNetzbMATHCrossRefGoogle Scholar
  220. 220.
    Salvagnin, D., & Walsh, T. (2012). A hybrid MIP/CP approach for multi-activity shift scheduling. In Milano, M. (Ed.) Principles and Practice of Constraint Programming, Lecture Notes in Computer Science, vol. 7514, pp. 633–646. Springer.Google Scholar
  221. 221.
    Satish, N., Ravindran, K., & Keutzer, K. (2007). A decomposition-based constraint optimization approach for statically scheduling task graphs with communication delays to multiprocessors. In Proceedings of the Conference on Design, Automation and Test in Europe, pp. 57–62. EDA Consortium.Google Scholar
  222. 222.
    Sellmann, M. (2004). Theoretical foundations of constraint programming-based Lagrangean relaxation. In Wallace, M. (Ed.) Principles and Practice of Constraint Programming (CP 2004), Lecture Notes in Computer Science, vol. 3258, pp. 634–647. Springer.Google Scholar
  223. 223.
    Sellmann, M., & Fahle, T. (2001). Constraint programming based Lagrangian relaxation for a multimedia application. In Gervet, C., & Wallace, M. (Eds.) Proceedings of the International Workshop on Integration of Artificial Intelligence and Operations Research Techniques in Constraint Programming for Combintaorial Optimization Problems (CPAIOR 2001). Ashford: U.K.Google Scholar
  224. 224.
    Sellmann, M., & Fahle, T. (2003). Constraint Programming Based Lagrangian Relaxation for the Automatic Recording Problem. Annals of Operations Research, 118 (1–4), 17–33.MathSciNetzbMATHCrossRefGoogle Scholar
  225. 225.
    Sellmann, M., Kliewer, G., & Koberstein, A. (2002). Lagrangian Cardinality Cuts and Variable Fixing for Capacitated Network Design. In Proceedings of ESA, Lecture Notes in Computer Science, vol. 2461, pp. 845–858. Springer.Google Scholar
  226. 226.
    Sellmann, M., Zervoudakis, K., Stamatopoulos, P., & Fahle, T. (2002). Crew assignment via constraint programming: Integrating column generation and heuristic tree search. Annals of Operations Research, 115, 207–225.MathSciNetzbMATHCrossRefGoogle Scholar
  227. 227.
    Shen, K., & Schimpf, J. (2005). Eplex: Harnessing Mathematical Programming Solvers for Constraint Logic Programming. In Proceedings of CP, Lecture Notes in Computer Science, vol. 3709, pp. 622–636. Springer.Google Scholar
  228. 228.
    Smith, B.M., Brailsford, S.C., Hubbard, P.M., & Williams, H.P. (1995). The progressive party problem: Integer linear programming and constraint programming compared. In Montanari, U., & Rossi, F. (Eds.) Principles and Practice of Constraint Programming (CP 1995), Lecture Notes in Computer Science, vol. 976, pp. 36–52. Springer.Google Scholar
  229. 229.
    Steiger, R., van Hoeve, W.J., & Szymanek, R. (2011). An efficient generic network flow constraint. In Proceedings of the ACM Symposium on Applied Computing (SAC), pp. 893–900.Google Scholar
  230. 230.
    Stuckey, P.J, de la Banda, M.G., Maher, M., Marriott, K., Slaney, J., Somogyi, Z., Wallace, M., & Walsh, T. (2005). The G12 project: Mapping solver independent models to efficient solutions. In van Beek, P. (Ed.) Principles and Practice of Constraint Programming (CP 2005), Lecture Notes in Computer Science, vol. 3668, pp. 314–327. Springer.Google Scholar
  231. 231.
    Taşkın, Z.C., Smith, J.C., Ahmed, S., & Schaefer, A.J. (2009). Cutting plane algorithms for solving a stochastic edge-partition problem. Discrete Optimization, 6, 420–435.MathSciNetzbMATHCrossRefGoogle Scholar
  232. 232.
    Tarim, S., Armagan, S., & Miguel, I. (2006). A hybrid Benders decomposition method for solving stochastic constraint programs with linear recourse. In Hnich, B., Carlsson, M., Fages, F., & Rossi, F. (Eds.) International Workshop on Constraint Solving and Constraint Logic Programming (CSCLP), pp. 133–148. Springer.Google Scholar
  233. 233.
    Terekhov, D., Beck, J.C., & Brown, K.N. (2007). Solving a stochastic queueing design and control problem with constraint programming. In Proceedings of the 22nd National Conference on Artificial Intelligence (AAAI 2007), vol. 1, pp. 261–266. AAAI Press.Google Scholar
  234. 234.
    Thorsteinsson, E. (2001). Branch and check: A hybrid framework integrating mixed integer programming and constraint logic programming. In Walsh, T. (Ed.) Principles and Practice of Constraint Programming (CP 2001), Lecture Notes in Computer Science, vol. 2239, pp. 16–30. Springer.Google Scholar
  235. 235.
    Timpe, C. (2002). Solving planning and scheduling problems with combined integer and constraint programming. OR Spectrum, 24, 431–448.zbMATHCrossRefGoogle Scholar
  236. 236.
    Tjandraatmadja, C., & van Hoeve, W.J. Target cuts from relaxed decision diagrams. INFORMS Journal on Computing (to appear).Google Scholar
  237. 237.
    Torres, P., & Lopez, P. (2000). On not-first/not-last conditions in disjunctive scheduling. European Journal of Operational Research, 127, 332–343.zbMATHCrossRefGoogle Scholar
  238. 238.
    Tran, T.T., & Beck, J.C. (2012). Logic-based Benders decomposition for alternative resource scheduling with sequence dependent setups. In European Conference on Artificial Intelligence (ECAI), Frontiers in Artificial Intelligence and Applications, vol. 242, pp. 774–779. IOS Press.Google Scholar
  239. 239.
    Trick, M. (2001). A dynamic programming approach for consistency and propagation for knapsack constraints. In Gervet, C., & Wallace, M. (Eds.) Proceedings, Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems (CPAIOR 2001) (pp. 113–124). Ashford: U.K.Google Scholar
  240. 240.
    Trick, M.A. (2003). A Dynamic Programming Approach for Consistency and Propagation for Knapsack Constraints. Annals of Operations Research, 118(1–4), 73–84.MathSciNetzbMATHCrossRefGoogle Scholar
  241. 241.
    Trick, M.A., & Yildiz, H. (2007). Benders cuts guided search for the traveling umpire problem. In van Hentemryck, P., & Wolsey, L. (Eds.) CPAIOR Proceedings, Lecture Notes in Computer Science, vol. 4510, pp. 332–345. Springer.Google Scholar
  242. 242.
    Tu̇rkay, M., & Grossmann, I.E. (1996). Logic-based MINLP algorithms for the optimal synthesis of process networks. Computers and Chemical Engineering, 20, 959–978.CrossRefGoogle Scholar
  243. 243.
    Van Hentenryck, P., Lustig, I., Michel, L., & Puget, J.F. (1999). The OPL Optimization Programming Language. Cambridge: MIT Press.Google Scholar
  244. 244.
    van Hoeve, W.J. (2003). A hybrid constraint programming and semidefinite programming approach for the stable set problem. In Rossi, F. (Ed.) Principles and Practice of Constraint Programming (CP 2003), Lecture Notes in Computer Science, vol. 2833, pp. 407–421. Springer.Google Scholar
  245. 245.
    van Hoeve, W.J. (2004). A hyper-arc consistency algorithm for the soft alldifferent constraint. In Wallace, M. (Ed.) Principles and Practice of Constraint Programming (CP 2004), Lecture Notes in Computer Science, vol. 3258, pp. 679–689. Springer.Google Scholar
  246. 246.
    van Hoeve, W.J., Pesant, G., Rousseau, L.M., & Sabharwal, A. (2006). Revisiting the sequence constraint. In Benhamou, F. (Ed.) Principles and Practice of Constraint Programming (CP 2006), Lecture Notes in Computer Science, vol. 4204, pp. 620–634. Springer.Google Scholar
  247. 247.
    Veinott, A.F., & Wagner, H. (1962). Optimal capacity scheduling I. Operations Research, 10, 518–532.zbMATHCrossRefGoogle Scholar
  248. 248.
    Wallace, M., Novello, M.S., & Schimpf, J. (1997). ECLiPSe: A platform for constraint logic programming. ICL Systems Journal, 12, 159–200.Google Scholar
  249. 249.
    Williams, H.P., & Yan, H. (2001). Representations of the all_different predicate of constraint satisfaction in integer programming. INFORMS Journal on Computing, 13, 96–103.MathSciNetzbMATHCrossRefGoogle Scholar
  250. 250.
    Xia, Q., Eremin, A., & Wallace, M. (2004). Problem decomposition for traffic diversions. In Régin, J.C., & Rueher, M. (Eds.) CPAIOR Proceedings, Lecture Notes in Computer Science, vol. 3011, pp. 348–363. Springer.Google Scholar
  251. 251.
    Yan, H., & Hooker, J.N. (1995). Tight representations of logical constraints as cardinality rules. Mathematical Programming, 85, 363–377.MathSciNetzbMATHCrossRefGoogle Scholar
  252. 252.
    Yunes, T.H., Aron, I., & Hooker, J.N. (2010). An integrated solver for optimization problems. Operations Research, 58, 342–356.MathSciNetzbMATHCrossRefGoogle Scholar
  253. 253.
    Yunes, T.H., Aron, I., & Hooker, J.N. An integrated solver for optimization problems. Operations Research (to appear).Google Scholar
  254. 254.
    Yunes, T.H., Moura, A.V, & de Souza, C.C. (1999). Exact solutions for real world crew scheduling problems. Philadelphia: Presentation at INFORMS national meeting.Google Scholar
  255. 255.
    Yunes, T.H., Moura, A.V, & de Souza, C.C. (2005). Hybrid column generation approaches for urban transit crew management problems. Transportation Science, 39, 273–388.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Carnegie Mellon UniversityPittsburghUSA

Personalised recommendations