1.

Andersen, H.R., Hadzic, T., Hooker, J.N., & Tiedemann, P. (2007). A constraint store based on multivalued decision diagrams. In Bessière, C. (Ed.) *Principles and practice of constraint programming (CP 2007). Lecture notes in computer science*, (Vol. 4741 pp. 118–132): Springer.

2.

Becker, B., Behle, M., Eisenbrand, F., & Wimmer, R. (2005). BDDS in a branch and cut framework. In Nikoletseas, S. (Ed.) *Experimental and efficient algorithms, proceedings of the 4th international workshop on efficient and experimental algorithms (WEA 05). Lecture notes in computer science*, (Vol. 3503 pp. 452–463): Springer.

3.

Behle, M. (2007). On threshold BDDs and the optimal variable ordering problem. In *COCOA’07: Proceedings Of the 1st international conference on combinatorial optimization and applications* (pp. 124–135). Berlin, Heidelberg: Springer.

4.

Bergman, D., Cire, A.A., & van Hoeve, W.J. (2014). MDD Propagation for sequence constraints.

*Journal of Artificial Intelligence Research*,

*50*, 697–722.

MathSciNetMATHGoogle Scholar5.

Bergman, D., Cire, A.A., van Hoeve, W.J., & Hooker, J.N. (2014). Optimization bounds from binary decision diagrams.

*INFORMS Journal on Computing*,

*26*(2), 253–268.

MathSciNetCrossRefGoogle Scholar6.

Bergman, D., Cire, A.A., van Hoeve, W.J., & Hooker, J.N. (2015). Discrete optimization with decision diagrams. *INFORMS Journal on Computing*. to appear.

7.

Bergman, D., Cire, A.A., van Hoeve, W.J.J., & Yunes, T.H. (2014). BDD-Based heuristics for binary optimization.

*Journal of Heuristics*,

*20*(2), 211–234.

CrossRefGoogle Scholar8.

Bergman, D., Ciré, A.A., Sabharwal, A., Samulowitz, H., Saraswat, V.A., & van Hoeve, W.J. (2014). Parallel combinatorial optimization with decision diagrams. In Simonis, H. (Ed.)

*Integration of AI and OR Techniques in Constraint Programming - 11th International Conference, CPAIOR 2014, Cork, Ireland, May 19-23, 2014. Proceedings. Lecture Notes in Computer Science*. doi:

10.1007/978-3-319-07046-9_25, (Vol. 8451 pp. 351–367) Springer.

9.

Bergman, D., Cire, A.A., & van Hoeve, W.J. (2015). Lagrangian bounds from decision diagrams.

*Constraints*,

*20*(3), 346–361.

MathSciNetCrossRefMATHGoogle Scholar10.

Bergman, D., van Hoeve, W.J., & Hooker, J.N. (2011). Manipulating MDD relaxations for combinatorial optimization. In Achterberg, T., & Beck, J.C. (Eds.) *CPAIOR. Lecture notes in computer science*, (Vol. 6697 pp. 20–35): Springer.

11.

Bergman, D. (2013). New techniques for discrete optimization. Ph.D. thesis, Carnegie Mellon University.

12.

Bryant, R.E. (1986). Graph-based algorithms for boolean function manipulation.

*IEEE Transactions on Computers*,

*C-35*, 677–691.

CrossRefMATHGoogle Scholar13.

Cheng, K.C., & Yap, R.H. (2010). An mdd-based generalized arc consistency algorithm for positive and negative table constraints and some global constraints.

*Constraints*,

*15*(2), 265–304.

MathSciNetCrossRefMATHGoogle Scholar14.

Cire, A.A., & van Hoeve, W.J. (2012). MDD Propagation for disjunctive scheduling. In *Proceedings of the twenty-second international conference on automated planing and scheduling (ICAPS)* (pp. 1–1): AAAI Press.

15.

Cire, A.A., & van Hoeve, W.J. (2013). Multivalued decision diagrams for sequencing problems.

*Operations Research*,

*61*(6), 1411–1428.

MathSciNetCrossRefMATHGoogle Scholar16.

Eppstein, D. (1998). Finding the k shortest paths.

*SIAM J. Comput.*,

*28*(2), 652–673.

MathSciNetCrossRefMATHGoogle Scholar17.

Gopalan, P., Klivans, A., Meka, R., Stefankovic, D., Vempala, S., & Vigoda, E. (2011). An fptas for #knapsack and related counting problems. In *IEEE 52nd annual symposium on Foundations of computer science (FOCS), 2011* (pp. 817–826).

18.

Hadzic, T., & Hooker, J.N. (2007). Cost-bounded binary decision diagrams for 0-1 programming. In Loute, E., & Wolsey, L. (Eds.) *Proceedings of the international workshop on integration of artificial intelligence and operations research techniques in constraint programming for combinatorial optimization problems (CPAIOR 2007). Lecture notes in computer science*, (Vol. 4510 pp. 84–98): Springer.

19.

Hadzic, T., Hooker, J.N., O’Sullivan, B., & Tiedemann, P. (2008). Approximate compilation of constraints into multivalued decision diagrams. In Stuckey, P.J. (Ed.) *Principles and practice of constraint programming (CP 2008). Lecture notes in computer science*, (Vol. 5202 pp. 448–462): Springer.

20.

Hadzic, T., Hooker, J.N., & Tiedemann, P. (2008). Propagating separable equalities in an MDD store. In Perron, L., & Trick, M.A. (Eds.) *Proceedings of the international workshop on integration of artificial intelligence and operations research techniques in constraint programming for combintaorial optimization problems (CPAIOR 2008). Lecture notes in computer science*, (Vol. 5015 pp. 318–322): Springer.

21.

Hoda, S., Hoeve, W.J.V., & Hooker, J.N. (2010). A systematic approach to MDD-based constraint programming. In *Proceedings of the 16th international conference on principles and practices of constraint programming. Lecture notes in computer science*, (Vol. 6308 pp. 266–280): Springer.

22.

Hooker, J.N. (2013). Decision diagrams and dynamic programming. In Gomes, C.P., & Sellmann, M. (Eds.) *CPAIOR. Lecture notes in computer science*, (Vol. 7874 pp. 94–110): Springer.

23.

Hosaka, K., Takenaga, Y., Kaneda, T., & Yajima, S. (1997). Size of ordered binary decision diagrams representing threshold functions.

*Theoretical Computer Science*,

*180*(1-2), 47–60.

MathSciNetCrossRefMATHGoogle Scholar24.

Lokshtanov, D. (2009). New methods in parameterized algorithms and complexity. Ph.D. thesis, University of Bergen.

25.

Rothvoß, T. (2011). Some 0/1 polytopes need exponential size extended formulations. arXiv:

1105.0036.

26.

Rothvoß, T. (2014). The matching polytope has exponential extension complexity. In *Proceedings of the 46th annual ACM symposium on theory of computing* (pp. 263–272). New York, NY, USA: STOC ’14, ACM.

27.

Wegener, I. (2000). Branching programs and binary decision diagrams: theory and applications. SIAM monographs on discrete mathematics and applications. Society for Industrial and Applied Mathematics.