Advertisement

Constraints

, Volume 21, Issue 2, pp 115–144 | Cite as

Tractability in constraint satisfaction problems: a survey

  • Clément Carbonnel
  • Martin C. CooperEmail author
Survey

Abstract

Even though the Constraint Satisfaction Problem (CSP) is NP-complete, many tractable classes of CSP instances have been identified. After discussing different forms and uses of tractability, we describe some landmark tractable classes and survey recent theoretical results. Although we concentrate on the classical CSP, we also cover its important extensions to infinite domains and optimisation, as well as #CSP and QCSP.

Keywords

Computational complexity Polynomial-time Dichotomy Tractable language Polymorphism Microstructure Forbidden pattern Relaxation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abrahamson, K.A., Downey, R.G., & Fellows, M.R. (1995). Fixed-parameter tractability and completeness IV: On completeness for W[P] and PSPACE analogues. Annals of Pure and Applied Logic, 73(3), 235–276.CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Adler, I., Gottlob, G., & Grohe, M. (2007). Hypertree width and related hypergraph invariants. European Journal of Combinatorics, 28(8), 2167–2181.CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Allen, J.F. (1983). Maintaining knowledge about temporal intervals. Communications of the ACM, 26, 832–843.CrossRefzbMATHGoogle Scholar
  4. 4.
    Arnborg, S. (1985). Efficient algorithms for combinatorial problems with bounded decomposability - a survey. BIT, 25(1), 2–23.CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Arnborg, S., Corneil, D.G., & Proskurowski, A. (1987). Complexity of finding an embedding in k-trees. SIAM journal of Algebraic and Discrete Methods, 8, 277–284.CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Barto, L. (2011). The dichotomy for conservative constraint satisfaction problems revisited. In LICS (pp. 301–310): IEEE Computer Society.Google Scholar
  7. 7.
    Barto, L. (2011). Finitely related algebras in congruence distributive varieties have near unanimity terms. Canadian Journal of Mathematics.Google Scholar
  8. 8.
    Barto, L. (2015). The collapse of the bounded width hierarchy. Journal of Logic and Computation. doi: 10.1093/logcom/exu070.Google Scholar
  9. 9.
    Barto, L., & Kozik, M. (2014). Constraint satisfaction problems solvable by local consistency methods. Journal of the ACM, 61(1), 3.CrossRefMathSciNetGoogle Scholar
  10. 10.
    Barto, L., Kozik, M., & Niven, T. (2009). The CSP dichotomy holds for digraphs with no sources and no sinks (a positive answer to a conjecture of bang-jensen and hell). SIAM Journal on Computing, 38(5), 1782–1802.CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    van Beek, P., & Dechter, R. (1995). On the minimality and decomposability of row-convex constraint networks. Journal of the ACM, 42(3), 543–561.CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    van Beek, P., & Dechter, R. (1997). Constraint tightness and looseness versus local and global consistency. Journal of the ACM, 44(4), 549–566.CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Bertelè, U., & Brioshi, F. (1972). Nonserial dynamic programming. Academic Press.Google Scholar
  14. 14.
    Bessière, C., Carbonnel, C., Hébrard, E., Katsirelos, G., & Walsh, T. (2013). Detecting and exploiting subproblem tractability. In Proceedings of the 23rd international joint conference on Artificial Intelligence (pp. 468–474). AAAI Press.Google Scholar
  15. 15.
    Bistarelli, S., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G., & Fargier, H. (1999). Semiring-based CSPs and valued CSPs: Frameworks, properties, and comparison. Constraints, 4, 199–240.CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    Bodirsky, M., & Chen, H. (2009). Relatively quantified constraint satisfaction. Constraints, 14(1), 3–15.CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Bodirsky, M., Chen, H., Kára, J., & von Oertzen, T. (2009). Maximal infinite-valued constraint languages. Theoretical Computer Science, 410(18), 1684–1693.CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    Bodirsky, M., & Grohe, M. (2008). Non-dichotomies in constraint satisfaction complexity. In ICALP (pp. 184–196).Google Scholar
  19. 19.
    Bodirsky, M., & Kára, J. (2008). The complexity of equality constraint languages. Theory Computing Systems, 43(2), 136–158.CrossRefzbMATHGoogle Scholar
  20. 20.
    Bodirsky, M., & Kára, J. (2010). The complexity of temporal constraint satisfaction problems. Journal of the ACM, 57(2), 9:1–9:41.CrossRefGoogle Scholar
  21. 21.
    Bodlaender, H.L. (1996). A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM Journal on Computing, 25(6), 1305–1317.CrossRefMathSciNetzbMATHGoogle Scholar
  22. 22.
    Bulatov, A.A. (2006). Combinatorial problems raised from 2-semilattices. Journal of Algebra, 298(2), 321–339.CrossRefMathSciNetzbMATHGoogle Scholar
  23. 23.
    Bulatov, A.A. (2006). A dichotomy theorem for constraint satisfaction problems on a 3-element set. Journal of the ACM, 53(1), 66–120.CrossRefMathSciNetGoogle Scholar
  24. 24.
    Bulatov, A.A. (2010). Bounded relational width. Tech. rep., School of Computer Science, Simon Fraser University.Google Scholar
  25. 25.
    Bulatov, A.A. (2011). Complexity of conservative constraint satisfaction problems. ACM Transactions on Computational Logic, 12(4), 24.CrossRefMathSciNetGoogle Scholar
  26. 26.
    Bulatov, A.A. (2013). The complexity of the counting constraint satisfaction problem. Journal of the ACM, 60(5), 34.MathSciNetGoogle Scholar
  27. 27.
    Bulatov, A.A. (2014). Conservative constraint satisfaction re-revisited. preprint arXiv:1408.3690.
  28. 28.
    Bulatov, A.A., & Dalmau, V. (2006). A simple algorithm for Mal’tsev constraints. SIAM Journal on Computing, 36(1), 16–27.CrossRefMathSciNetzbMATHGoogle Scholar
  29. 29.
    Bulatov, A.A., Dyer, M.E., Goldberg, L.A., Jalsenius, M., & Richerby, D. (2009). The complexity of weighted Boolean #CSP with mixed signs. Theoretical Computer Science, 410(38–40), 3949–3961.CrossRefMathSciNetzbMATHGoogle Scholar
  30. 30.
    Bulatov, A.A., Dyer, M.E., Goldberg, L.A., Jerrum, M., & McQuillan, C. (2013). The expressibility of functions on the boolean domain, with applications to counting CSPs. Journal of the ACM, 60(5), 32.MathSciNetGoogle Scholar
  31. 31.
    Bulatov, A.A., & Jeavons, P.G. (2001). Algebraic structures in combinatorial problems. Tech. Rep. MATH-AL-4-2001, Technische Universität Dresden.Google Scholar
  32. 32.
    Bulatov, A.A., Jeavons, P.G., & Krokhin, A.A. (2005). Classifying the complexity of constraints using finite algebras. SIAM Journal on Computing, 34, 720–742.CrossRefMathSciNetzbMATHGoogle Scholar
  33. 33.
    Bulatov, A.A., Krokhin, A.A., & Jeavons, P. (2001). The complexity of maximal constraint languages. In J.S. Vitter, P.G. Spirakis, & M. Yannakakis (Eds.), STOC (pp. 667–674). ACM.Google Scholar
  34. 34.
    Bulatov, A.A., Krokhin, A.A., & Larose, B. (2008). Dualities for constraint satisfaction problems. In N. Creignou, P.G. Kolaitis, & H. Vollmer (Eds.), Complexity of Constraints - An Overview of Current Research Themes [Result of a Dagstuhl Seminar]., Lecture Notes in Computer Science, (Vol. 5250 pp. 93–124). Springer.Google Scholar
  35. 35.
    Bulatov, A.A., & Marx, D. (2014). Constraint satisfaction parameterized by solution size. SIAM Journal on Computing, 43(2), 573–616.CrossRefMathSciNetzbMATHGoogle Scholar
  36. 36.
    Bulatov, A.A., Valeriote, M., P. Kolaitis, & H. Vollmer (2008). Recent results on the algebraic approach to the CSP. In N. Creignou (Ed.), Complexity of Constraints, Lecture Notes in Computer Science, (Vol. 5250 pp. 68–92). Berlin / Heidelberg: Springer.Google Scholar
  37. 37.
    Carbonnel, C., Cooper, M.C., & Hebrard, E. (2014). On backdoors to tractable constraint languages. In B. O’Sullivan (Ed.), Principles and Practice of Constraint Programming - 20th International Conference, CP 2014, Lyon, France, September 8-12, 2014. Proceedings, Lecture Notes in Computer Science, (Vol. 8656 pp. 224–239). Springer.Google Scholar
  38. 38.
    Carvalho, C., Egri, L., Jackson, M., & Niven, T. (2011). On Maltsev digraphs. In Computer Science–Theory and Applications (pp. 181–194). Springer.Google Scholar
  39. 39.
    Chen, H. (2009). A rendezvous of logic, complexity, and algebra. ACM Computing Surveys, 42(1).Google Scholar
  40. 40.
    Chen, H., Dalmau, V., & Grußien, B. (2013). Arc consistency and friends. Journal of Logic and Computation, 23(1), 87–108.CrossRefMathSciNetzbMATHGoogle Scholar
  41. 41.
    Chen, H., & Grohe, M. (2010). Constraint satisfaction with succinctly specified relations. Journal of Computer and System Sciences, 76(8), 847–860.CrossRefMathSciNetzbMATHGoogle Scholar
  42. 42.
    Chen, J., Kanj, I.A., & Xia, G. (2010). Improved upper bounds for vertex cover. Theoretical Computer Science, 411(40), 3736–3756.CrossRefMathSciNetzbMATHGoogle Scholar
  43. 43.
    Chudnovsky, M., Cornuéjols, G., Liu, X., Seymour, P., & Vuskovic, K. (2005). Recognizing Berge graphs. Combinatorica, 25(2), 143–186.CrossRefMathSciNetzbMATHGoogle Scholar
  44. 44.
    Chudnovsky, M., Robertson, N., Seymour, P., & Thomas, R. (2006). The strong perfect graph theorem. Annals of Math, 164(1), 51–229.CrossRefMathSciNetzbMATHGoogle Scholar
  45. 45.
    Cobham, A. (1964). The intrinsic computational difficulty of functions. In Proceedings of International Congress for Logic, Methodology, and Philosophy of Science (pp. 24–30). North-Holland.Google Scholar
  46. 46.
    Cohen, D.A., Cooper, M.C., Creed, P., Jeavons, P.G., & živný, S. (2013). An algebraic theory of complexity for discrete optimisation. SIAM Journal on Computing, 42(5), 1915–1939.CrossRefMathSciNetzbMATHGoogle Scholar
  47. 47.
    Cohen, D.A., Cooper, M.C., Creed, P., Marx, D., & Salamon, A.Z. (2012). The tractability of CSP classes defined by forbidden patterns. Journal of Artificial Intelligence Research (JAIR), 45, 47–78.MathSciNetzbMATHGoogle Scholar
  48. 48.
    Cohen, D.A., Cooper, M.C., Green, M.J., & Marx, D. (2011). On guaranteeing polynomially bounded search tree size. In J.H.M. Lee (Ed.), CP, Lecture Notes in Computer Science, (Vol. 6876 pp. 160–171). Springer.Google Scholar
  49. 49.
    Cohen, D.A., Cooper, M.C., Jeavons, P., & Krokhin, A.A. (2006). The complexity of soft constraint satisfaction. Artificial Intelligence, 170(11), 983–1016.CrossRefMathSciNetzbMATHGoogle Scholar
  50. 50.
    Cohen, D.A., Jeavons, P., Jonsson, P., & Koubarakis, M. (2000). Building tractable disjunctive constraints. Journal of the ACM, 47(5), 826–853.CrossRefMathSciNetGoogle Scholar
  51. 51.
    Cohen, D.A., & Jeavons, P.G. (2006). The complexity of constraint languages. In F. Rossi, P. van Beek, & T. Walsh (Eds.), Handbook of constraint programming (pp. 245–280). Elsevier.Google Scholar
  52. 52.
    Cook, S.A. (1971). The complexity of theorem-proving procedures. In M.A. Harrison, R.B. Banerji, & J.D. Ullman (Eds.), STOC (pp. 151–158). ACM.Google Scholar
  53. 53.
    Cooper, M.C. (1999). Linear-time algorithms for testing the realisability of line drawings of curved objects. Artificial Intelligence, 108, 31–67.CrossRefMathSciNetzbMATHGoogle Scholar
  54. 54.
    Cooper, M.C. (2014). Beyond consistency and substitutability. In CP (pp. 256–271).Google Scholar
  55. 55.
    Cooper, M.C., Cohen, D.A., & Jeavons, P. (1994). Characterising tractable constraints. Artificial Intelligence, 65(2), 347–361.CrossRefMathSciNetzbMATHGoogle Scholar
  56. 56.
    Cooper, M.C., & Escamocher, G. (2012). A dichotomy for 2-constraint forbidden CSP patterns. In J. Hoffmann, & B. Selman (Eds.), AAAI. AAAI Press.Google Scholar
  57. 57.
    Cooper, M.C., de Givry, S., Sanchez, M., Schiex, T., Zytnicki, M., & Werner, T. (2010). Soft arc consistency revisited. Artificial Intelligence, 174(7–8), 449–478.CrossRefMathSciNetzbMATHGoogle Scholar
  58. 58.
    Cooper, M.C., Jeavons, P.G., & Salamon, A.Z. (2010). Generalizing constraint satisfaction on trees: Hybrid tractability and variable elimination. Artificial Intelligence, 174(9–10), 570–584.CrossRefMathSciNetzbMATHGoogle Scholar
  59. 59.
    Cooper, M.C., Maris, F., & Régnier, P. (2014). Monotone temporal planning: Tractability, extensions and applications. Journal of Artificial Intelligence Research (JAIR), 50, 447–485.zbMATHGoogle Scholar
  60. 60.
    Cooper, M.C., Mouelhi, A.E., Terrioux, C., & Zanuttini, B. (2014). On broken triangles. In O’Sullivan, B (Ed.), Principles and Practice of Constraint Programming - 20th International Conference, CP 2014, Lyon, France, September 8-12, 2014. Proceedings, Lecture Notes in Computer Science, (Vol. 8656 pp. 9–24). Springer.Google Scholar
  61. 61.
    Cooper, M.C., & živný, S. (2011). Hybrid tractability of valued constraint problems. Artificial Intelligence, 175(9-10), 1555–1569.CrossRefMathSciNetzbMATHGoogle Scholar
  62. 62.
    Cooper, M.C., & živný, S. (2012). Tractable triangles and cross-free convexity in discrete optimisation. Journal of Artificial Intelligence Research (JAIR), 44, 455–490.zbMATHGoogle Scholar
  63. 63.
    Courcelle, B. (1990). Graph rewriting: An algebraic and logic approach. In Handbook of theoretical computer science, Volume B: formal models and sematics (B) (pp. 193–242).Google Scholar
  64. 64.
    Creignou, N., & Hébrard, J.J. (1997). On generating all solutions of generalized satisfiability problems. Informatique Théorique et Applications, 31(6), 499–511.zbMATHGoogle Scholar
  65. 65.
    Creignou, N., Kolaitis, P., & Vollmer, H. (Eds.) (2008). Complexity of Constraints, Lecture Notes in Computer Science, Vol. 5250. Springer.Google Scholar
  66. 66.
    Dalmau, V. (2000). A new tractable class of constraint satisfaction problems, AMAI.Google Scholar
  67. 67.
    Dalmau, V. (2006). Generalized majority-minority operations are tractable. Logical Methods in Computer Science, 2(4), 438–447.CrossRefMathSciNetGoogle Scholar
  68. 68.
    Dalmau, V., & Pearson, J. (1999). Closure functions and width 1 problems. In Principles and Practice of Constraint Programming–CP 99 (pp. 159–173). Springer.Google Scholar
  69. 69.
    David, P. (1995). Using pivot consistency to decompose and solve functional CSPs. Journal of Artificial Intelligence Research (JAIR), 2, 447–474.zbMATHGoogle Scholar
  70. 70.
    de Givry, S., Schiex, T., & Verfaillie, G. (2006). Exploiting tree decomposition and soft local consistency in weighted CSP. In AAAI (pp. 22–27).Google Scholar
  71. 71.
    de Haan, R. Kanj (2015). On the subexponential-time complexity of CSP. Journal of Artificial Intelligence Research, 52, 203–234.Google Scholar
  72. 72.
    Dechter, R. (1992). From local to global consistency. Artificial Intelligence, 55 (1), 87–108.CrossRefMathSciNetzbMATHGoogle Scholar
  73. 73.
    Dechter, R. (2003). Constraint processing, (pp. 94104–3205). San Francisco: Morgan Kaufmann Publishers.Google Scholar
  74. 74.
    Dechter, R., Meiri, I., & Pearl, J. (1991). Temporal constraint networks. Artificial Intelligence, 49(1-3), 61–95.CrossRefMathSciNetzbMATHGoogle Scholar
  75. 75.
    Dechter, R., & Pearl, J. (1987). Network-based heuristics for constraint-satisfaction problems. Artificial Intelligence, 34(1), 1–38.CrossRefMathSciNetGoogle Scholar
  76. 76.
    Dehne, F.K.H.A., Fellows, M.R., Langston, M.A., Rosamond, F.A., & Stevens, K. (2005). An o(2o(k)n3) FPT algorithm for the undirected feedback vertex set problem. In L. Wang (Ed.), Computing and Combinatorics, 11th Annual International Conference, COCOON 2005, Kunming, China, August 16–29, 2005, Proceedings, Lecture Notes in Computer Science, (Vol. 3595 pp. 859–869). Springer.Google Scholar
  77. 77.
    Deville, Y., Barette, O., & Hentenryck, P.V. (1999). Constraint satisfaction over connected row convex constraints. Artificial Intelligence, 109(1-2), 243–271.CrossRefMathSciNetzbMATHGoogle Scholar
  78. 78.
    Downey, R.G., & Fellows, M.R. (1995). Fixed-parameter tractability and completeness I: Basic results. SIAM Journal on Computing, 24(4), 873–921.CrossRefMathSciNetzbMATHGoogle Scholar
  79. 79.
    Downey, R.G., Fellows, M.R., & Stege, U. (1999). Parameterized complexity: A framework for systematically confronting computational intractability. In Contemporary trends in discrete mathematics: From DIMACS and DIMATIA to the future, (Vol. 49 pp. 49–99). AMS-DIMACS Proceedings Series.Google Scholar
  80. 80.
    Drakengren, T., & Jonsson, P. (2005). Computational complexity of temporal constraint problems. In M. Fisher, D. Gabbay, & L. Vila (Eds.), Handbook of temporal reasoning in artificial intelligence (pp. 197–218). Elsevier.Google Scholar
  81. 81.
    Dyer, M., & Richerby, D. (2013). An effective dichotomy for the counting constraint satisfaction problem. SIAM Journal on Computing, 42(3), 1245–1274.CrossRefzbMATHGoogle Scholar
  82. 82.
    Dyer, M.E., Goldberg, L.A., & Jerrum, M. (2009). The complexity of weighted boolean #CSP. SIAM Journal on Computing, 38(5), 1970–1986.CrossRefMathSciNetzbMATHGoogle Scholar
  83. 83.
    Edmonds, J. (1965). Paths, trees and flowers. Canadian Journal of Mathematics, 17, 449–467.CrossRefMathSciNetzbMATHGoogle Scholar
  84. 84.
    Feder, T., & Hell, P. (2006). Full constraint satisfaction problems. SIAM Journal on Computing, 36(1), 230–246.CrossRefMathSciNetzbMATHGoogle Scholar
  85. 85.
    Feder, T., & Kolaitis, P.G. (2006). Closures and dichotomies for quantified constraints. Electronic Colloquium on Computational Complexity (ECCC), 13(160).Google Scholar
  86. 86.
    Feder, T., & Vardi, M.Y. (1998). The computational structure of monotone monadic SNP and constraint satisfaction: A study through Datalog and group theory. SIAM Journal of Computing, 28(1), 57–104.CrossRefMathSciNetzbMATHGoogle Scholar
  87. 87.
    Freuder, E.C. (1990). Complexity of k-tree structured constraint satisfaction problems. In H.E. Shrobe, T.G. Dietterich, & W.R. Swartout (Eds.), AAAI (pp. 4–9). AAAI Press / The MIT Press.Google Scholar
  88. 88.
    Gao, J., Yin, M., & Zhou, J. (2011). Hybrid tractable classes of binary quantified constraint satisfaction problems. In W. Burgard, & D. Roth (Eds.), AAAI. AAAI Press.Google Scholar
  89. 89.
    Gao, Y. (2003). Phase transition of tractability in constraint satisfaction and bayesian network inference. In UAI (pp. 265–271).Google Scholar
  90. 90.
    Garey, M., & Johnson, D. (1979). Computers and intractability: A guide to the theory of NP-completeness. San Francisco: W.H.Freeman and Company.zbMATHGoogle Scholar
  91. 91.
    Gaspers, S., Misra, N., Ordyniak, S., Szeider, S., & Zivny, S. (2014). Backdoors into heterogeneous classes of SAT and CSP. In C.E. Brodley, & P. Stone (Eds.), Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, July 27 -31, 2014, Québec City, Québec, Canada (pp. 2652–2658). AAAI Press. http://www.aaai.org/Library/AAAI/aaai14contents.php.
  92. 92.
    Gerevini, A., & Cristani, M. (1997). On finding a solution in temporal constraint satisfaction problems. In IJCAI (pp. 1460–1465).Google Scholar
  93. 93.
    Gottlob, G., Leone, N., & Scarcello, F. (2002). Hypertree decomposition and tractable queries. Journal of Computer and System Sciences, 64(3), 579–627.CrossRefMathSciNetzbMATHGoogle Scholar
  94. 94.
    Green, M.J., & Cohen, D.A. (2008). Domain permutation reduction for constraint satisfaction problems. Artificial Intelligence, 172(8-9), 1094–1118.CrossRefMathSciNetzbMATHGoogle Scholar
  95. 95.
    Grohe, M. (2001). Generalized model-checking problems for first-order logic. In STACS 2001 (pp. 12–26). Springer.Google Scholar
  96. 96.
    Grohe, M. (2006). The structure of tractable constraint satisfaction problems. In MFCS (pp. 58–72).Google Scholar
  97. 97.
    Grohe, M. (2007). The complexity of homomorphism and constraint satisfaction problems seen from the other side. Journal of the ACM, 54(1), 1–24.CrossRefMathSciNetGoogle Scholar
  98. 98.
    Grohe, M., Kreutzer, S., & Siebertz, S. (2014). Deciding first-order properties of nowhere dense graphs. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing (pp. 89–98). ACM.Google Scholar
  99. 99.
    Grohe, M. (2014). Marx, D.: Constraint solving via fractional edge covers. ACM Transactions on Algorithms, 11(1), 4.CrossRefMathSciNetGoogle Scholar
  100. 100.
    Grötschel, M., Lovasz, L., & Schrijver, A. (1981). The ellipsoid method and its consequences in combinatorial optimization. Combinatorica, 1, 169–198.CrossRefMathSciNetzbMATHGoogle Scholar
  101. 101.
    Hell, P., & Nešetril, J. (1990). On the complexity of h-coloring. Journal of Combinatorial Theory, Series B, 48(1), 92–110.CrossRefMathSciNetzbMATHGoogle Scholar
  102. 102.
    Hell, P., & Nešetril, J. (2008). Colouring, constraint satisfaction, and complexity. Computer Science Review, 2(3), 143–163.CrossRefzbMATHGoogle Scholar
  103. 103.
    Hermann, M., & Richoux, F. (2009). On the computational complexity of monotone constraint satisfaction problems. In S. Das, & R. Uehara (Eds.), WALCOM, Lecture Notes in Computer Science, (Vol. 5431 pp. 286–297). Springer.Google Scholar
  104. 104.
    Idziak, P.M., Markovic, P., McKenzie, R., Valeriote, M., & Willard, R. (2010). Tractability and learnability arising from algebras with few subpowers. SIAM Journal on Computing, 39(7), 3023–3037.CrossRefMathSciNetzbMATHGoogle Scholar
  105. 105.
    Iwata, S., & Orlin, J.B. (2009). A simple combinatorial algorithm for submodular function minimization. In SODA (pp. 1230–1237).Google Scholar
  106. 106.
    Jeavons, P., Cohen, D., & Gyssens, M. (1995). A unifying framework for tractable constraints. In Proceedings 1st international conference on constraint programming, CP’95, (Vol. 976 pp. 276–291). Springer-Verlag.Google Scholar
  107. 107.
    Jeavons, P., Cohen, D.A., & Gyssens, M. (1997). Closure properties of constraints. Journal of the ACM, 44(4), 527–548.CrossRefMathSciNetzbMATHGoogle Scholar
  108. 108.
    Jeavons, P., & Petke, J. (2012). Local consistency and SAT-solvers. Journal of Artificial Intelligence Research (JAIR), 43, 329–351.MathSciNetzbMATHGoogle Scholar
  109. 109.
    Jeavons, P.G. (1998). Constructing constraints. In Proceedings 4th International Conference on Constraint Programming—CP’98 (Pisa, October 1998), Lecture Notes in Computer Science, (Vol. 1520 pp. 2–16). Springer-Verlag.Google Scholar
  110. 110.
    Jeavons, P.G. (1998). On the algebraic structure of combinatorial problems. Theoretical Computer Science, 200, 185–204.CrossRefMathSciNetzbMATHGoogle Scholar
  111. 111.
    Jeavons, P.G., Cohen, D.A., & Cooper, M.C. (1998). Constraints, consistency and closure. Artificial Intelligence, 101(1–2), 251–265.CrossRefMathSciNetzbMATHGoogle Scholar
  112. 112.
    Jeavons, P.G., & Cooper, M.C. (1995). Tractable constraints on ordered domains. Artificial Intelligence, 79(2), 327–339.CrossRefMathSciNetzbMATHGoogle Scholar
  113. 113.
    Jeavons, P.G., Krokhin, A.A., & živný, S. (2014). The complexity of valued constraint satisfaction: Bulletin of EATCS.Google Scholar
  114. 114.
    Jégou, P. (1993). Decomposition of domains based on the micro-structure of finite constraint-satisfaction problems. In AAAI (pp. 731–736). Menlo Park: AAAI Press.Google Scholar
  115. 115.
    Jonsson, P., & Bäckström, C. (1998). A unifying approach to temporal constraint reasoning. Artificial Intelligence, 102(1), 143–155.CrossRefMathSciNetzbMATHGoogle Scholar
  116. 116.
    Jonsson, P., & Drakengren, T. (1997). A complete classification of tractability in RCC-5. Journal of Artificial Intelligence Research, 6, 211–221.MathSciNetzbMATHGoogle Scholar
  117. 117.
    Jonsson, P., Lagerkvist, V., Nordh, G., & Zanuttini, B. (2013). Complexity of SAT problems, clone theory and the exponential time hypothesis. In S. Khanna (Ed.), SODA (pp. 1264–1277). SIAM.Google Scholar
  118. 118.
    Karp, R.M. (1972). Reducibility among combinatorial problems. In R.E. Miller, & J.W. Thatcher (Eds.), Complexity of computer computations (pp. 85–103). Plenum Press.Google Scholar
  119. 119.
    Kazda, A. (2011). CSP for binary conservative relational structures. preprint arXiv:1112.1099.
  120. 120.
    Kolmogorov, V., Krokhin, A., & Rolinek, M. (2015). The complexity of general-valued CSPs. arXiv preprint arXiv:1502.07327.
  121. 121.
    Kolmogorov, V., & živný, S. (2013). The complexity of conservative valued CSPs. Journal of the ACM, 60(2), 10.CrossRefMathSciNetGoogle Scholar
  122. 122.
    Koubarakis, M. (1996). Tractable disjunctions of linear constraints. In E.C. Freuder (Ed.), CP, Lecture Notes in Computer Science, (Vol. 1118 pp. 297–307). Springer.Google Scholar
  123. 123.
    Kozik, M. (2008). A finite set of functions with an EXPTIME-complete composition problem. Theoretical Computer Science, 407(1–3), 330–341.CrossRefMathSciNetzbMATHGoogle Scholar
  124. 124.
    Kozik, M., Krokhin, A., Valeriote, M., & Willard, R. Characterizations of several Maltsev conditions. preprint (2013). (to appear in Algebra Universalis).Google Scholar
  125. 125.
    Krokhin, A., Jeavons, P., & Jonsson, P. (2003). Reasoning about temporal relations: The tractable subalgebras of Allen’s interval algebra. Journal of the ACM, 50, 591–640.CrossRefMathSciNetGoogle Scholar
  126. 126.
    Krokhin, A., Jeavons, P., & Jonsson, P. (2004). Constraint satisfaction problems on intervals and lengths. SIAM Journal on Discrete Mathematics, 17(3), 453–477.CrossRefMathSciNetzbMATHGoogle Scholar
  127. 127.
    Kun, G., & Szegedy, M. (2009). A new line of attack on the dichotomy conjecture. In M. Mitzenmacher (Ed.), Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009 (pp. 725–734). ACM.Google Scholar
  128. 128.
    Ladner, R.E. (1975). On the structure of polynomial time reducibility. Journal of the ACM, 22(1), 155–171.CrossRefMathSciNetzbMATHGoogle Scholar
  129. 129.
    Larose, B., Loten, C., & Tardif, C. (2007). A characterisation of first-order constraint satisfaction problems. preprint arXiv:0707.2562.
  130. 130.
    Larose, B., & Zádori, L. (2006). Taylor terms, constraint satisfaction and the complexity of polynomial equations over finite algebras. IJAC, 16(3), 563–582.zbMATHGoogle Scholar
  131. 131.
    Lesaint, D., Azarmi, N., Laithwaite, R., & Walker, P. (1998). Engineering dynamic scheduler for Work Manager. BT Technology Journal, 16, 16–29.CrossRefGoogle Scholar
  132. 132.
    Lin, B. (2015). The parameterized complexity of k-biclique. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015 (pp. 605–615).Google Scholar
  133. 133.
    Luczak, T., & Nesetril, J. (2006). A probabilistic approach to the dichotomy problem. SIAM Journal on Computing, 36(3), 835–843.CrossRefMathSciNetzbMATHGoogle Scholar
  134. 134.
    Marx, D. (2005). Parameterized complexity of constraint satisfaction problems. Computational Complexity, 14(2), 153–183.CrossRefMathSciNetzbMATHGoogle Scholar
  135. 135.
    Marx, D. (2010). Approximating fractional hypertree width. ACM Transactions on Algorithms, 6(2), 29:1–29:17.CrossRefMathSciNetGoogle Scholar
  136. 136.
    Marx, D. (2011). Tractable structures for constraint satisfaction with truth tables. Theory Computing System, 48(3), 444–464.CrossRefMathSciNetzbMATHGoogle Scholar
  137. 137.
    Marx, D. (2013). Tractable hypergraph properties for constraint satisfaction and conjunctive queries. Journal of the ACM, 60(6), 42.CrossRefMathSciNetGoogle Scholar
  138. 138.
    Mouelhi, A.E., Jégou, P., & Terrioux, C. (2014). Different classes of graphs to represent microstructures for CSPs (Vol. 8323, pp. 21–38).Google Scholar
  139. 139.
    Naanaa, W. (2013). Unifying and extending hybrid tractable classes of CSPs. Journal of Experimental & Theoretical Artificial Intelligence, 25(4), 407–424.CrossRefGoogle Scholar
  140. 140.
    Ordyniak, S., Paulusma, D., & Szeider, S. (2013). Satisfiability of acyclic and almost acyclic CNF formulas. Theoretical Computer Science, 481, 85–99. doi: 10.1016/j.tcs.2012.12.039.CrossRefMathSciNetzbMATHGoogle Scholar
  141. 141.
    Papadimitriou, C.H., & Yannakakis, M. (1997). On the complexity of database queries. In Proceedings of the 16th ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems (pp. 12–19). ACM.Google Scholar
  142. 142.
    Pearson, J.K., & Jeavons, P.G. (1997). A survey of tractable constraint satisfaction problems. Tech. Rep. CSD-TR-97-15, Royal Holloway, University of London.Google Scholar
  143. 143.
    Petke, J., & Jeavons, P. (2011). The order encoding: From tractable CSP to tractable SAT. In K.A. Sakallah, & L. Simon (Eds.), SAT, Lecture Notes in Computer Science, (Vol. 6695 pp. 371–372). Springer.Google Scholar
  144. 144.
    Pralet, C., & Verfaillie, G. (2012). Time-dependent simple temporal networks. In CP (pp. 608–623).Google Scholar
  145. 145.
    Purvis, L., & Jeavons, P. (1999). Constraint tractability theory and its application to the product development process for a constraint-based scheduler. In Proceedings of 1st International Conference on The Practical Application of Constraint Technologies and Logic Programming - PACLP’99 (pp. 63–79). Practical Applications Company.Google Scholar
  146. 146.
    Robertson, N., & Seymour, P.D. (1995). Graph minors XIII. The disjoint paths problem. Journal of Combinatorial Theory Series B, 63(1), 65–110.CrossRefMathSciNetzbMATHGoogle Scholar
  147. 147.
    Salamon, A.Z., & Jeavons, P.G. (2008). Perfect constraints are tractable. In CP, Lecture Notes in Computer Science, (Vol. 5202 pp. 524–528): Springer.Google Scholar
  148. 148.
    Samer, M., & Szeider, S. (2010). Constraint satisfaction with bounded treewidth revisited. Journal of Computer and System Sciences, 76(2), 103–114.CrossRefMathSciNetzbMATHGoogle Scholar
  149. 149.
    Schaefer, T.J. (1978). The complexity of satisfiability problems. In Proceedings 10th ACM Symposium on Theory of Computing, STOC’78 (pp. 216–226).Google Scholar
  150. 150.
    Scott, A.D., & Sorkin, G.B. (2009). Polynomial constraint satisfaction problems, graph bisection, and the Ising partition function. ACM Transactions on Algorithms, 5(4), 45:1–45:27.CrossRefMathSciNetGoogle Scholar
  151. 151.
    Thapper, J., & živný, S. (2012). The power of linear programming for valued CSPs. In 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012 (pp. 669–678). IEEE Computer Society.Google Scholar
  152. 152.
    Thapper, J., & živný, S. (2013). The complexity of finite-valued CSPs. In D. Boneh, T. Roughgarden, & J. Feigenbaum (Eds.), STOC (pp. 695–704). ACM.Google Scholar
  153. 153.
    van Hoeve, W.J., & Katriel, I. (2006). Global constraints. In F. Rossi, P. van Beek, & T. Walsh (Eds.), Handbook of Constraint Programming (chap. 6, pp. 169–208). Elsevier.Google Scholar
  154. 154.
    Welsh, D. (1993). Complexity: Knots, Colourings and Counting. Cambridge University Press.Google Scholar
  155. 155.
    Werner, T. (2007). A linear programming approach to max-sum problem: A review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(7), 1165–1179.CrossRefGoogle Scholar
  156. 156.
    Willard, R. (2010). Testing expressibility is hard. In D. Cohen (Ed.), CP, Lecture Notes in Computer Science, (Vol. 6308 pp. 9–23). Springer.Google Scholar
  157. 157.
    Williams, R., Gomes, C.P., & Selman, B. (2003). Backdoors to typical case complexity. In G. Gottlob, & T. Walsh (Eds.), IJCAI (pp. 1173–1178). Morgan Kaufmann.Google Scholar
  158. 158.
    Yorke-Smith, N., & Gervet, C. (2009). Certainty closure: Reliable constraint reasoning with incomplete or erroneous data. ACM Transactions on Computational Logic, 10(1).Google Scholar
  159. 159.
    živný, S. (2012). The complexity of valued constraint satisfaction problems. Cognitive technologies. Springer.Google Scholar
  160. 160.
    Zytnicki, M., Gaspin, C., & Schiex, T. (2008). DARN! A weighted constraint solver for RNA motif localization. Constraints, 13(1–2), 91–109.CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.CNRS, LAASToulouseFrance
  2. 2.University of Toulouse, INP Toulouse, LAASToulouseFrance
  3. 3.IRIT, University of Toulouse IIIToulouseFrance

Personalised recommendations