Constraints

, Volume 20, Issue 3, pp 346–361

Lagrangian bounds from decision diagrams

  • David Bergman
  • Andre A. Cire
  • Willem-Jan van Hoeve
Article

Abstract

Relaxed decision diagrams have recently been used in constraint programming to improve constraint propagation and optimization reasoning. In most applications, however, a decision diagram is compiled with respect to a single combinatorial structure. We propose to expand this representation by incorporating additional constraints in the decision diagram via a Lagrangian relaxation. With this generic approach we can obtain stronger bounds from the same decision diagram, while the associated cost-based filtering allows for further refining the relaxation. Experimental results on the traveling salesman problem with time windows show that the improved Lagrangian bounds can drastically reduce solution times.

Keywords

Decision diagrams Lagrangian relaxation Constraint propagation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akers, S.B. (1978). Binary decision diagrams. IEEE Transactions on Computers, C-27, 509–516.CrossRefGoogle Scholar
  2. 2.
    Andersen, H.R., Hadzic, T., Hooker, J.N., & Tiedemann, P. (2007). A constraint store based on multivalued decision diagrams. In Proceedings of the 13th international conference on Principles and practice of constraint programming (pp. 118–132). Springer-Verlag, Berlin, Heidelberg.Google Scholar
  3. 3.
    Becker, B., Behle, M., Eisenbrand, F., & Wimmer, R. (2005). BDDs in a branch and cut framework. In Nikoletseas, S. (Ed.), Experimental and efficient algorithms, proceedings of the 4th international workshop on Efficient and experimental algorithms (WEA 05). Lecture Notes in Computer Science (Vol. 3503, pp. 452–463). Springer.Google Scholar
  4. 4.
    Behle, M. (2007). Binary decision diagrams and integer programming. Ph.D. thesis, Max Planck Institute for Computer Science.Google Scholar
  5. 5.
    Benoist, T., Laburthe, F., & Rottembourg, B. (2001). Lagrange relaxation and constraint programming collaborative schemes for travelling tournament problems. In Proceedings of the 3rd international workshop on Integration of AI and OR techniques in constraint programming for combinatorial optimization problems (CPAIOR).Google Scholar
  6. 6.
    Bergman, D. (2013). New techniques for discrete optimization. Ph.D. thesis, Tepper School of Business, Carnegie mellon university.Google Scholar
  7. 7.
    Bergman, D., Cire, A.A., & van Hoeve, W.J. (2014). Mdd propagation for sequence constraints. Journal of Artificial Intelligence Research (JAIR), 50, 697–722.MATHMathSciNetGoogle Scholar
  8. 8.
    Bergman, D., Cire, A.A., van Hoeve, W.J., & Hooker, J.N. (2012). Variable ordering for the application of bdds to the maximum independent set problem. In Proceedings of the 9th international conference on integration of AI and OR techniques in Constraint programming for combinatorial optimization problems (pp. 34–49). Springer-Verlag, Berlin, Heidelberg.Google Scholar
  9. 9.
    Bergman, D., Cire, A.A., van Hoeve, W.J., & Hooker, J.N. (2014). Optimization bounds from binary decision diagrams. INFORMS Journal on Computing, 26(2), 253–268.CrossRefMathSciNetGoogle Scholar
  10. 10.
    Bergman, D., Cire, A., van Hoeve, W.J., & Yunes, T. (2014). Bdd-based heuristics for binary optimization. Journal of Heuristics, 20(2), 211–234.CrossRefGoogle Scholar
  11. 11.
    Bergman, D., van Hoeve, W.J., & Hooker, J. (2011). Manipulating MDD relaxations for combinatorial optimization. In T. Achterberg & J. Beck (Eds.), Integration of AI and OR techniques in constraint programming for combinatorial optimization problems, Lecture notes in computer science (Vol. 6697, pp. 20–35). Springer Berlin / Heidelberg.Google Scholar
  12. 12.
    Bryant, R.E. (1986). Graph-based algorithms for boolean function manipulation. IEEE Transactions on Computers, C-35, 677–691.CrossRefGoogle Scholar
  13. 13.
    Cire, A.A., & van Hoeve, W.J. (2013). Multivalued decision diagrams for sequencing problems. Operations Research, 61(6), 1411–1428.CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Fisher, M.L. (2004). The lagrangian relaxation method for solving integer programming problems. Management Science, 50(12), 1861–1871. Supplement.CrossRefGoogle Scholar
  15. 15.
    Fontaine, D., Michel, L., & Van Hentenryck, P. (2014). Constraint-based lagrangian relaxation. In B. O’Sullivan (Ed.), Principles and practice of constraint programming, Lecture notes in computer science (Vol. 8656, pp. 324–339). Springer International Publishing.Google Scholar
  16. 16.
    Hadzic, T., & Hooker, J. (2006). Postoptimality analysis for integer programming using binary decision diagrams. Tech. rep., Carnegie Mellon University.Google Scholar
  17. 17.
    Hadzic, T., Hooker, J.N., O’Sullivan, B., & Tiedemann, P. (2008). Approximate compilation of constraints into multivalued decision diagrams. In Proceedings of the 14th international conference on principles and practice of constraint programming (pp. 448–462). Springer-Verlag, Berlin.Google Scholar
  18. 18.
    Hoda, S., van Hoeve, W.J., & Hooker, J.N. (2010). A systematic approach to MDD-based constraint programming. In Proceedings of constraint programming (Vol. 6308, pp. 266–280). LNCS, Springer.Google Scholar
  19. 19.
    Hooker, J.N. (2012). Integrated methods for optimization (International Series in Operations Research & Management Science), 2nd Edn. Inc., Secaucus, Springer-Verlag New York.Google Scholar
  20. 20.
    Khemmoudj, M., Bennaceur, H., & Nagih, A. (2005). Combining arc-consistency and dual lagrangean relaxation for filtering csps. In R. Barták & M. Milano (Eds.), Integration of AI and OR techniques in Constraint programming for combinatorial optimization problems, Lecture notes in computer science (Vol. 3524, pp. 258–272). Springer Berlin Heidelberg.Google Scholar
  21. 21.
    Lee, C.Y. (1959). Representation of switching circuits by binary-decision programs. Bell Systems Technical Journal, 38, 985–999.CrossRefGoogle Scholar
  22. 22.
    Lemaréchal, C. (2001). Lagrangian relaxation. In M. Jünger & D. Naddef (Eds.), Computational combinatorial optimization, Lecture notes in computer science (Vol. 2241, pp. 112–156). Springer Berlin Heidelberg.Google Scholar
  23. 23.
    Papadimitriou, C.H., & Steiglitz, K. (1982). Combinatorial optimization: algorithms and complexity. Prentice-Hall, Inc., Upper Saddle River.Google Scholar
  24. 24.
    Rossi, F., van Beek, P., & Walsh, T. (eds.) (2006). Handbook of constraint programming. Elsevier.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • David Bergman
    • 1
  • Andre A. Cire
    • 2
  • Willem-Jan van Hoeve
    • 3
  1. 1.School of Business, University of ConnecticutOne University PlaceStamfordUSA
  2. 2.Department of ManagementUniversity of Toronto ScarboroughTorontoCanada
  3. 3.Tepper School of Business, Carnegie Mellon UniversityPittsburghUSA

Personalised recommendations