, Volume 20, Issue 4, pp 433–451 | Cite as

A constraint programming approach to the additional relay placement problem in wireless sensor networks

  • Luis QuesadaEmail author
  • Lanny Sitanayah
  • Kenneth N. Brown
  • Barry O’Sullivan
  • Cormac J. Sreenan


A Wireless Sensor Network (WSN) is composed of many sensor nodes which transmit their data wirelessly over a multi-hop network to data sinks. Since WSNs are subject to node failures, the network topology should be robust, so that when a failure does occur, data delivery can continue from all surviving nodes. A WSN is k-robust if an alternate length-constrained route to a sink is available for each surviving node after the failure of up to k-1 nodes. A WSN is strongly k-robust if there are k disjoint length-constrained routes to a sink for each node. Determining whether a network is k-robust is polynomial. However, determining whether a network is strongly k-robust is an NP-complete problem. We develop a Constraint Programming (CP) approach for deciding strongly k-robustness that outperforms a Mixed-Integer Programming (MIP) model on larger problems. A network can be made (strongly) robust by deploying extra relay nodes. We extend our CP approach to an optimisation approach by using QuickXplain to search for a minimal set of relays, and compare it to a state-of-the-art local search approach.


Constraint optimisation problem Wireless sensor networks Network deployment planning Relay placement Node disjoint paths 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beldiceanu, N., Flener, P., & Lorca, X. (2008). Combining tree partitioning, precedence, and incomparability constraints. Constraints, 13(4), 459–489.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Boukerche, A., Pazzi, R.W.N., & Araujo, R.B. (2006). fault-tolerant wireless sensor network routing protocols for the supervision of contex-aware physical environments. Journal of Parallel and Distributed Computing, 66(4), 586–599.CrossRefzbMATHGoogle Scholar
  3. 3.
    Bredin, J.L., Demaine, E.D., Hajiaghayi, M., & Rus, D. (2005). Deploying sensor networks with guaranteed capacity and fault tolerance. In: Proc. 6th ACM Int’l Symp. Mobile Ad Hoc Networking and Computing (MobiHoc’05).Google Scholar
  4. 4.
    Chipara, O., He, Z., Xing, G., Chen, Q., Wang, X., Lu, C., Stankovic, J., & Abdelzaher, T. (2006). Real-time power-aware routing in wireless sensor networks. In: Proc. 14th IEEE Workshop Quality of Service (IWQoS’06).Google Scholar
  5. 5.
    Cormen, T.H., Stein, C., Rivest, R.L., & Leiserson, C.E. (2001). Introduction to algorithms, 2nd edn. McGraw-Hill higher education.Google Scholar
  6. 6.
    Feo, T.A., & Resende, M.G.C. (1989). A probabilistic heuristic for a computationally difficult set covering problem. Operations Research Letters, 8, 67–71.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Feo, T.A., & Resende, M.G.C. (1995). Greedy randomized adaptive search procedures. Journal of Global Optimization, 6, 109–133.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gnawali, O., Fonseca, R., Jamieson, K., Moss, D., & Levis, P. (2009). Collection tree protocol. In: Proc. 7th ACM Conf. Embedded Networked Sensor Systems (SenSys’09).Google Scholar
  9. 9.
    Golovach, P.A., & Thilikos, D.M. (2011). Paths of bounded length and their cuts: Parameterized complexity and algorithms. Discrete Optimization, 8(1), 72–86.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Han, X., Cao, X., Lloyd, E.L., & Shen, C.C. (2010). Fault-tolerant relay node placement in heterogeneous wireless sensor networks. IEEE Transactions on Mobile Computing, 9(5), 643–656.CrossRefGoogle Scholar
  11. 11.
    Junker, U. (2004). QUICKXPLAIN: Preferred explanations and relaxations for over-constrained problems. In: McGuinness, D.L., Ferguson, G. (eds) AAAI, AAAI Press/The MIT Press.Google Scholar
  12. 12.
    Lovász, L., Neumann-Lara, V., & Plummer, M. (1978). Mengerian theorems for paths of bounded length. Periodica Mathematica Hungarica, 9(4), 269–276.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Misra, S., Hong, S.D., Xue, G., & Tang, J. (2008). Constrained relay node placement in wireless sensor networks to meet connectivity and survivability requirements. In: Proc. 27th Ann. IEEE Conf. Computer Communications (INFOCOM’08).Google Scholar
  14. 14.
    Pu, J., Xiong, Z., & Lu, X. (2008). Fault-tolerant deployment with k-connectivity and partial k-connectivity in sensor networks. Wireless Communications and Mobile Computing, 9(7), 909–919.CrossRefGoogle Scholar
  15. 15.
    Resende, M.G.C., & Ribeiro, C.C. (2002). Greedy randomized adaptive search procedures. In: Glover, F., Kochenberger, G. (eds) State of the Art Handbook in Metaheuristics, Kluwer Academic Publishers.Google Scholar
  16. 16.
    Sitanayah, L., Brown, K.N., & Sreenan, C.J. (2011). Fault-tolerant relay deployment for k node-disjoint paths in wireless sensor networks. In: Proc. 4th Int’l Conf. IFIP Wireless Days (WD’11), IEEE.Google Scholar
  17. 17.
    Xiao, Y., Thulasiraman, K., & Xue, G. (2006). Constrained shortest link-disjoint paths selection: A network programming based approach. IEEE Trans Circuits and Systems I: Regular Papers, 53(5), 1174–1187. doi: 10.1109/TCSI.2006.869907.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Zeng, Y., Sreenan, C.J., Sitanayah, L., Xiong, N., Park, J.H., & Zheng, G. (2011). An emergency-adaptive routing scheme for wireless sensor networks for building fire hazard monitoring. Sensors, 11(3), 2899–2919.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Luis Quesada
    • 1
    Email author
  • Lanny Sitanayah
    • 2
  • Kenneth N. Brown
    • 1
  • Barry O’Sullivan
    • 1
  • Cormac J. Sreenan
    • 2
  1. 1.CTVR and Insight Centre for Data Analytics, Department of Computer ScienceUniversity College CorkCorkIreland
  2. 2.CTVR and Mobile & Internet Systems Laboratory, Department of Computer ScienceUniversity College CorkCorkIreland

Personalised recommendations