, Volume 20, Issue 3, pp 325–345 | Cite as

A constraint-based local search backend for MiniZinc

  • Gustav Björdal
  • Jean-Noël MonetteEmail author
  • Pierre Flener
  • Justin Pearson


MiniZinc is a modelling language for combinatorial problems, which can then be solved by a solver provided in a backend. There are many backends, based on technologies such as constraint programming, integer programming, or Boolean satisfiability solving. However, to the best of our knowledge, there is currently no constraint-based local search (CBLS) backend. We discuss the challenges to develop such a backend and give an overview of the design of a CBLS backend for MiniZinc. Experimental results show that for some MiniZinc models, our CBLS backend, based on the OscaR/CBLS solver, is able to give good-quality results in competitive time.


Constraint-based local search MiniZinc 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Achterberg, T. (2009). SCIP: Solving constraint integer programs. Mathematical Programming Computation, 1(1), 1–41.CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Akgün, O., Frisch, A.M., Gent, I.P., Hussain, B.S., Jefferson, C., Kotthoff, L., Miguel, I., & Nightingale, P. (2013). Automated symmetry breaking and model selection in CONJURE. In C. Schulte (Ed.) CP 2013, LNCS, (Vol. 8124 pp. 107–116): Springer.Google Scholar
  3. 3.
    Amadini, R., Gabbrielli, M., & Mauro, J. (2014). Sunny: a lazy portfolio approach for constraint solving. Theory and Practice of Logic Programming, 14, 509–524.CrossRefzbMATHGoogle Scholar
  4. 4.
    Beldiceanu, N., Carlsson, M., Demassey, S., & Petit, T. (2007). Global constraint catalogue: Past, present, and future. Constraints, 12(1), 21–62. The catalogue is at Scholar
  5. 5.
    Benoist, T., Estellon, B., Gardi, F., Megel, R., & Nouioua, K. (2011). LocalSolver 1.x: a black-box local-search solver for 0-1 programming. 4OR. A Quarterly Journal of Operations Research, 9(3), 299–316.zbMATHMathSciNetGoogle Scholar
  6. 6.
    Björdal, G. (2014). The first constraint-based local search backend for MiniZinc. Bachelor Thesis in Computer Science, Report IT 14 066, Faculty of Science and Technology, Uppsala University, Sweden.
  7. 7.
    Bofill, M., Palahí, M., Suy, J., & Villaret, M. fzn2smt, a compiler from the FlatZinc language to the standard SMT-LIB language.
  8. 8.
    Codognet, P., & Diaz, D. (2001). Yet another local search method for constraint solving. In K. Steinhöfel (Ed.) SAGA 2001, First International Symposium on Stochastic Algorithms: Foundations and Applications, LNCS, (Vol. 2264 pp. 73–90): Springer.Google Scholar
  9. 9.
    De Landtsheer, R. (2012). Oscar.cbls: a constraint-based local search engine.
  10. 10.
    Dotú, I., & Van Hentenryck, P. (2005). Scheduling social golfers locally. In R. Barták, & M. Milano (Eds.) CP-AI-OR 2005, LNCS, (Vol. 3524 pp. 155–167): Springer.Google Scholar
  11. 11.
    Elsayed, S.A.M., & Michel, L. (2011). Synthesis of search algorithms from high-level CP models. In J. Lee (Ed.) CP 2011, LNCS, (Vol. 6876 pp. 256–270): Springer.Google Scholar
  12. 12.
    Feydy, T., Somogyi, Z., & Stuckey, P. (2011). Half-reification and flattening. In J. Lee (Ed.) CP 2011, LNCS, (Vol. 6876 pp. 286–301): Springer.Google Scholar
  13. 13.
    Fontaine, D., Michel, L., & Van Hentenryck, P. (2013). Model combinators for hybrid optimization. In C. Schulte (Ed.) CP 2013, LNCS, (Vol. 8124 pp. 299–314): Springer.Google Scholar
  14. 14.
    Frisch, A.M., Grum, M., Jefferson, C., Martinez Hernandez, B., & Miguel, I. (2007). The design of ESSENCE: A constraint language for specifying combinatorial problems. In M. Veloso (Ed.), IJCAI 2007 (pp. 80–87). AAAI Press.Google Scholar
  15. 15.
    Fujiwara, T. (2014). iZ based solver for MiniZinc Challenge.
  16. 16.
    Gecode Team. Gecode/FlatZinc.
  17. 17.
    Glover, F. (1989). Tabu Search Part I. ORSA Journal on Computing, 1(3), 190–206.Google Scholar
  18. 18.
    Y. Hamadi, E. Monfroy, & F. Saubion (Eds.) (2012). Autonomous Search: Springer.Google Scholar
  19. 19.
    He, J., Flener, P., & Pearson, J. (2012). Solution neighbourhoods for constraint-directed local search. In S. Bistarelli, E. Monfroy, & B. O’Sullivan (Eds.) SAC/CSP 2012. (pp. 74–79): ACM Press.Google Scholar
  20. 20.
    Hoos, H.H. (2012). Automated algorithm configuration and parameter tuning. In Y. Hamadi, E. Monfroy, & F. Saubion (Eds.) Autonomous Search. (pp. 37–71): Springer.Google Scholar
  21. 21.
    Hoos, H.H., & Stützle, T. (2004). Stochastic Local Search: Foundations & Applications: Elsevier/Morgan Kaufmann.Google Scholar
  22. 22.
    Karp, R.M. (1972). Reducibility among combinatorial problems. In R.E. Miller, & J.W. Thatcher (Eds.) Complexity of Computer Computations. (pp. 85–103): Plenum Press.Google Scholar
  23. 23.
    Monette, J.N., Deville, Y., & Van Hentenryck, P. (2009). Aeon: Synthesizing scheduling algorithms from high-level models. In J.W. Chinneck, B. Kristjansson, & M.J. Saltzman (Eds.) Operations Research and Cyber-Infrastructure, Operations Research/Computer Science Interfaces, (Vol. 47 pp. 43–59): Springer.Google Scholar
  24. 24.
    Nethercote, N. Converting MiniZinc to FlatZinc. .
  25. 25.
    Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., & Tack, G. (2007). MiniZinc: Towards a standard CP modelling language. In C. Bessière (Ed.), CP 2007, LNCS (Vol. 4741, pp. 529–543). Springer.
  26. 26.
    Newton, M.H., Pham, D.N., Sattar, A., & Maher, M. (2011). Kangaroo: An efficient constraint-based local search system using lazy propagation. In J. Lee (Ed.) CP 2011, LNCS, (Vol. 6876 pp. 645–659): Springer.Google Scholar
  27. 27.
    Nightingale, P., Akgün, O., Gent, I.P., Jefferson, C., & Miguel, I. (2014). Automatically improving constraint models in Savile Row through associative-commutative common subexpression elimination. In B. O’Sullivan (Ed.) CP 2014, LNCS, (Vol. 8656 pp. 590–605): Springer.Google Scholar
  28. 28.
    Nowicki, E., & Smutnicki, C. (1996). A fast taboo search algorithm for the job shop problem. Management Science, 42(6), 797–813.CrossRefzbMATHGoogle Scholar
  29. 29.
    Opturion Pty Ltd. Opturion CPX.
  30. 30.
    OR Team at Google. OR-Tools.
  31. 31.
    OscaR Team (2012). OscaR: Scala in OR.
  32. 32.
    Parr, T.J. (2007). The Definitive ANTLR Reference: Building Domain-Specific Languages: The Pragmatic Bookshelf.Google Scholar
  33. 33.
    Prestwich, S.D. (2002). Supersymmetric modeling for local search. In P. Flener, & J. Pearson (Eds.) SymCon 2002.
  34. 34.
    Stuckey, P.J., Becket, R., & Fischer, J. (2010). Philosophy of the MiniZinc challenge. Constraints, 15(3), 307–316.CrossRefzbMATHGoogle Scholar
  35. 35.
    Stuckey, P.J., Feydy, T., Schutt, A., Tack, G., & Fischer, J. (2014). The MiniZinc challenge 2008–2013. AI Magazine, 35(2), 55–60.Google Scholar
  36. 36.
    Van Hentenryck, P. (1999). The OPL Optimization Programming Language: The MIT Press.Google Scholar
  37. 37.
    Van Hentenryck, P., & Michel, L. (2003) In F. Rossi (Ed.), Control abstractions for local search (Vol. 2833, pp. 65–80): Springer.Google Scholar
  38. 38.
    Van Hentenryck, P., & Michel, L. (2004). Scheduling abstractions for local search. In J.C. Régin, & M. Rueher (Eds.) CP-AI-OR 2004, LNCS, (Vol. 3011 pp. 319–334): Springer.Google Scholar
  39. 39.
    Van Hentenryck, P., & Michel, L. (2007). Synthesis of constraint-based local search algorithms from high-level models. In A. Howe, & R.C. Holte (Eds.) AAAI 2007. (pp. 273–278): AAAI Press.Google Scholar
  40. 40.
    Van Hentenryck, P., & Michel, L. (2009). Constraint-Based Local Search: The MIT Press.Google Scholar
  41. 41.
    Van Hentenryck, P., Michel, L., & Liu, L. (2004). Constraint-based combinators for local search. In M. Wallace (Ed.) CP 2004, LNCS, (Vol. 3258 pp. 47–61): Springer.Google Scholar
  42. 42.
    Yunes, T.H., Aron, I.D., & Hooker, J.N. (2010). An integrated solver for optimization problems. Operations Research, 58(2), 342–356.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Information TechnologyUppsala UniversityUppsalaSweden

Personalised recommendations