, Volume 20, Issue 2, pp 109–154 | Cite as

Ultra-weak solutions and consistency enforcement in minimax weighted constraint satisfaction

  • Arnaud Lallouet
  • Jimmy H. M. Lee
  • Terrence W. K. MakEmail author
  • Justin Yip


The task at hand is that of a soft constraint problem with adversarial conditions. By amalgamating the weighted and quantified constraint satisfaction frameworks, a Minimax Weighted Constraint Satisfaction Problem (formerly Quantified Weighted Constraint Satisfaction Problem) consists of a set of finite domain variables, a set of soft constraints, and a min or max quantifier associated with each of these variables. We formally define the framework, suggest three solution concepts, and propose a complete solver based on alpha-beta pruning techniques. We discuss in depth our novel definitions and implementations of node, arc and full directional arc consistency notions to help reduce search space on top of the basic tree search with alpha-beta pruning for solving ultra-weak solutions. In particular, these consistencies approximate the lower and upper bounds of the cost of a problem by exploiting the semantics of the quantifiers and reusing techniques from both Weighted and Quantified Constraint Satisfaction Problems. Lower bound computation employs standard estimation of costs in the sub-problems used in alpha-beta search. In estimating upper bounds, we propose two approaches based on the Duality Principle: duality of quantifiers and duality of constraints. The first duality amounts to changing quantifiers from min to max, while the second duality re-uses the lower bound approximation functions on dual constraints to generate upper bounds. Experiments on three benchmarks comparing basic alpha-beta pruning and the six consistencies from the two dualities are performed to confirm the feasibility and efficiency of our proposal.


Constraint optimization Soft constraint satisfaction Minimax game search Consistency algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allis, L.V. (1994). Searching for solutions in games and artificial intelligence. Ph.D. thesis, University of Limburg.Google Scholar
  2. 2.
    Apt, K. (2003). Principles of constraint programming. New York: Cambridge University Press.Google Scholar
  3. 3.
    Arora, S., & Barak, B. (2009). Computational complexity: a modern approach, 1st edn. Cambridge University Press.Google Scholar
  4. 4.
    Benedetti, M., Lallouet, A., Vautard, J. (2008). Quantified constraint optimization. In CP’08 (pp. 463–477).Google Scholar
  5. 5.
    Bordeaux, L., Cadoli, M., Mancini, T. (2005). CSP properties for quantified constraints: definitions and complexity. In AAAI’05 (pp. 360–365).Google Scholar
  6. 6.
    Bordeaux, L., & Monfroy, E. (2002). Beyond NP: arc-consistency for quantified constraints. In CP’02 (pp. 371–386).Google Scholar
  7. 7.
    Brown, K.N., Little, J., Creed, P.J., Freuder, E.C. (2004). Adversarial constraint satisfaction by game-tree search. In ECAI’04 (pp. 151–155).Google Scholar
  8. 8.
    Cabon, B, de Givry, S., Lobjois, L., Schiex, T., Warners, J. (1999). Radio link frequency assignment. CONSTRAINTS, 4, 79–89.CrossRefzbMATHGoogle Scholar
  9. 9.
    Cooper, M, de Givry, S., Sanchez, M., Schiex, T., Zytnicki, M., Werner, T. (2010). Soft arc consistency revisited. Artificial Intelligence, 174 (7–8), 449–478.CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Cooper, M.C., De Givry, S., Schiex, T. (2007). Optimal soft arc consistency. In IJCAI’07 (pp. 68–73).Google Scholar
  11. 11.
    Debruyne, R., & Bessiere, C. (1997). From restricted path consistency to max-restricted path consistency. In CP’97 (pp. 312–326).Google Scholar
  12. 12.
    Dempe, S. (2002). Foundations of bilevel programming. Kluwer Academic Publishers.Google Scholar
  13. 13.
    Gent, I.P., Nightingale, P., Stergiou, K. (2005). QCSP-Solve: a solver for quantified constraint satisfaction problems. In IJCAI’05 (pp. 138–143).Google Scholar
  14. 14.
    van den Herik, H.J., Uiterwijk, J.W.H.M., van Rijswijck, J. (2002). Games solved: now and in the future. Artificial Intelligence, 134 (1-2), 277–311.CrossRefzbMATHGoogle Scholar
  15. 15.
    Lallouet, A., Lee, J.H.M., Mak, T.W.K. (2012). Consistencies for ultra-weak solutions in minimax weighted csps using the duality principle. In CP’12 (pp. 373–389).Google Scholar
  16. 16.
    Larrosa, J., & Schiex, T. (2003). In the quest of the best form of local consistency for weighted CSP. In IJCAI’03 (pp. 239–244).Google Scholar
  17. 17.
    Larrosa, J., & Schiex, T. (2004). Solving weighted CSP by maintaining arc consistency. Artificial Intelligence, 159 (1-2), 1–26.CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Lee, J.H.M., & Leung, K.L. (2012). Consistency techniques for flow-based projection-safe global cost functions in weighted constraint satisfaction. JAIR, 43, 257–292.zbMATHMathSciNetGoogle Scholar
  19. 19.
    Lee, J.H.M., Leung, K.L., Wu, Y. (2012). Polynomially decomposable global cost functions in weighted constraint satisfaction. In AAAI’12 (pp. 507–513).Google Scholar
  20. 20.
    Lee, J.H.M., & Mak, T.W.K. (2012). A value ordering heuristic for solving ultra-weak solutions in minimax weighted csps. In ICTAI’12 (pp. 17–24).Google Scholar
  21. 21.
    Lee, J.H.M., Mak, T.W.K., Yip, J. (2011). Weighted constraint satisfaction problems with min-max quantifiers. In ICTAI ’11 (pp. 769–776).Google Scholar
  22. 22.
    Lee, J.H.M., & Shum, Y.W. (2011). Modeling soft global constraints as linear programs in weighted constraint satisfaction. In ICTAI ’11 (pp. 305–312).Google Scholar
  23. 23.
    Mamoulis, N., & Stergiou, K. (2004). Algorithms for quantified constraint satisfaction problems. In CP’04 (pp. 752–756).Google Scholar
  24. 24.
    Murty, K.G. (1985). Linear and combinatorial programming. R. E. Krieger.Google Scholar
  25. 25.
    Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V. (2007). Algorithmic game theory. Cambridge University Press.Google Scholar
  26. 26.
    Pralet, C., Schiex, T., Verfaillie, G. (2006). Decomposition of multi-operator queries on semiring-based graphical models. In CP’06 (pp. 437–452).Google Scholar
  27. 27.
    Pralet, C., Schiex, T., Verfaillie, G. (2009). Sequential decision-making problems - representation and solution. Wiley.Google Scholar
  28. 28.
    Prieditis, A.E., & Fletcher, E. (1998). Two-agent ida*. Journal of Experimental & Theoretical Artificial Intelligence, 10 (4), 451–485.CrossRefzbMATHGoogle Scholar
  29. 29.
    Rossi, F., van Beek, P., Walsh, T. (2006). Handbook of constraint programming (foundations of artificial intelligence). New York: Elsevier Science Inc.Google Scholar
  30. 30.
    Russell, S.J., & Norvig, P. (2003). Artificial intelligence: a modern approach. Pearson Education.Google Scholar
  31. 31.
    Schaeffer, J., Burch, N., Bjrnsson, Y., Kishimoto, A., Mller, M., Lake, R., Lu, P., Sutphen, S. (2007). Checkers is solved. Science, 317 (5844), 1518–1522.CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Sturtevant, N.R., & Korf, R.E. (2000). On pruning techniques for multi-player games. In AAAI’00 (pp. 201–207).Google Scholar
  33. 33.
    Von Neumann, J., & Morgenstern, O. (1944). Theory of games and economic behavior. Princeton University Press.Google Scholar
  34. 34.
    Walsh, T. (2002). Stochastic constraint programming. In ECAI ’02 (pp. 111–115).Google Scholar
  35. 35.
    Wolsey, L.A. (1998). Integer programming. Wiley.Google Scholar
  36. 36.
    Wu, Y. (2011). Tractable projection-safe soft global constraints in weighted constraint satisfaction. Master’s thesis, The Chinese University of Hong Kong.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Arnaud Lallouet
    • 1
  • Jimmy H. M. Lee
    • 2
  • Terrence W. K. Mak
    • 3
    Email author
  • Justin Yip
    • 4
  1. 1.Université de Caen, GREYCCaen CedexFrance
  2. 2.The Chinese University of Hong KongShatinHong Kong
  3. 3.NICTA CRLCanberraAustralia
  4. 4.Brown UniversityProvidenceUSA

Personalised recommendations