Constraints

, Volume 20, Issue 2, pp 183–234 | Cite as

Synchronized sweep algorithms for scalable scheduling constraints

Article

Abstract

This paper introduces a family of synchronized sweep-based filtering algorithms for handling scheduling problems involving resource and precedence constraints. The key idea is to filter all constraints of a scheduling problem in a synchronized way in order to scale better. In addition to normal filtering mode, the algorithms can run in greedy mode, in which case they perform a greedy assignment of start and end times. The filtering mode achieves a significant speed-up over the decomposition into independent cumulative and precedence constraints, while the greedy mode can handle up to 1 million tasks with 64 resource constraints and 2 million precedences. These algorithms were implemented in both CHOCO and SICStus.

Keywords

Global constraint Cumulative Scalability Fixpoint Sweep 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aggoun, A., & Beldiceanu, N. (1993). Extending CHIP in order to solve complex scheduling and placement problems. Mathematics Computing Modelling, 17(7), 57–73.CrossRefGoogle Scholar
  2. 2.
    Baptiste, P., Le Pape, C., Nuijten, W. (2001). Constraint-based scheduling: applying constraint programming to scheduling problems. International series in operations research and management science. Kluwer.Google Scholar
  3. 3.
    Beldiceanu, N., & Carlsson, M. (2001). Sweep as a generic pruning technique applied to the non-overlapping rectangles constraint. In CP, LNCS (Vol. 2237, pp. 377–391). Springer.Google Scholar
  4. 4.
    Beldiceanu, N., & Carlsson, M. (2002). A new multi-resource cumulatives constraint with negative heights. In CP, LNCS (Vol. 2470, pp. 63–79). Springer.Google Scholar
  5. 5.
    Beldiceanu, N., Carlsson, M., Poder, E., Sadek, R., Truchet, C. (2007). A generic geometrical constraint kernel in space and time for handling polymorphic k-dimensional objects. In CP, LNCS (Vol. 4741, pp. 180–194). Springer.Google Scholar
  6. 6.
    Beldiceanu, N., Carlsson, M., Thiel, S. (2006). Sweep synchronisation as a global propagation mechanism. Computers and Operations Research, 33(10), 2835–2851.CrossRefMATHGoogle Scholar
  7. 7.
    de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O. (1997). Computational geometry - algorithms and applications. Springer.Google Scholar
  8. 8.
    Carlsson, M., Ottosson, G., Carlson, B. (1997). An open-ended finite domain constraint solver. In H. Glaser, P. Hartel, H. Kuchen (Eds.), PLILP, LNCS (Vol. 1292, pp. 191–206). Springer. http://sicstus.sics.se/.
  9. 9.
    Freuder, E., Lee, J., O’Sullivan, B., Pesant, G., Rossi, F., Sellman, M., Walsh, T. (2011). The future of CP. Personal Communication.Google Scholar
  10. 10.
    Kameugne, R., Fotso, L.P., Scott, J., Ngo-Kateu, Y. (2011). A quadratic edge-finding filtering algorithm for cumulative resource constraints. In CP, LNCS (Vol. 6876, pp. 478–492). Springer.Google Scholar
  11. 11.
    Kolisch, R., & Sprecher, A. (1996). PSPLIB – a project scheduling problem library. European Journal Of Operational Research, 96, 205–216.CrossRefGoogle Scholar
  12. 12.
    Letort, A. (2013). Passage à l’échelle pour les contraintes d’ordonnancement multi-ressources. Ph.D. thesis, University of Nantes. In French.Google Scholar
  13. 13.
    Letort, A., Beldiceanu, N., Carlsson, M. (2012). A scalable sweep algorithm for the cumulative constraint. In CP, LNCS (pp. 439–454). Springer.Google Scholar
  14. 14.
    Letort, A., Carlsson, M., Beldiceanu, N. (2013). A synchronized sweep algorithm for the k-dimensional cumulative constraint. In CPAIOR, LNCS (pp. 144–159). Springer.Google Scholar
  15. 15.
    Letort, A., Carlsson, M., Beldiceanu, N. (2013). Synchronized sweep algorithms for scalable scheduling constraints. Tech. Rep. T2013-05. Swedish Institute of Computer Science.Google Scholar
  16. 16.
    O’Sullivan, B. (2011). CP panel position - the future of CP. Personal Communication.Google Scholar
  17. 17.
    Pape, C.L. (1988). Des systèmes d’ordonnancement flexibles et opportunistes. Ph.D. thesis, Université Paris IX. In French.Google Scholar
  18. 18.
    Petit, T. (2012). Intermediary local consistencies. In ECAI (pp. 919–920).Google Scholar
  19. 19.
    Régin, J.C., & Rezgui, M. (2011). Discussion about constraint programming bin packing models. In AI for data center management and cloud computing. AAAI.Google Scholar
  20. 20.
    ROADEF: Challenge 2012 machine reassignment (2012). http://challenge.roadef.org/2012/en/index.php.
  21. 21.
    Schaus, P., & Deville, Y. (2008). A global constraint for bin-packing with precedences: application to the assembly line balancing problem. In AAAI (pp. 369–374). AAAI Press.Google Scholar
  22. 22.
    Schulte, C. (1999). Comparing trailing and copying for constraint programming. In D.D. Schreye (Ed.), ICLP (pp. 275–289). The MIT Press.Google Scholar
  23. 23.
    Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G. (2009). Why cumulative decomposition is not as bad as it sounds. In CP, LNCS (Vol. 5547, pp. 746–761). Springer.Google Scholar
  24. 24.
    Shaw, P. (1998). Using constraint programming and local search methods to solve vehicle routing problems. In CP, LNCS (Vol. 1520, pp. 417–431). Springer.Google Scholar
  25. 25.
    Simonis, H. (2013). An industrial benchmark. Personal Communication.Google Scholar
  26. 26.
    Team, C. (2010). Choco: an open source Java CP library. Research report 10-02-INFO. Ecole des Mines de Nantes. http://choco.emn.fr/.
  27. 27.
    Vilím, P. (2009). Edge finding filtering algorithm for discrete cumulative resources in O(kn log n). In CP, LNCS (Vol. 5547, pp. 802–816). Springer.Google Scholar
  28. 28.
    Vilím, P. (2011). Timetable edge finding filtering algorithm for discrete cumulative resources. In CPAIOR, LNCS (Vol. 6697, pp. 230–245). Springer.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Arnaud Letort
    • 1
  • Mats Carlsson
    • 2
  • Nicolas Beldiceanu
    • 1
  1. 1.TASC team (CNRS/INRIA)NantesFrance
  2. 2.SICSKistaSweden

Personalised recommendations