, Volume 19, Issue 2, pp 150–162 | Cite as

Grand challenges for constraint programming

  • Eugene C. Freuder
  • Barry O’Sullivan


Every field should have its Grand Challenges. After discussing some general “why and how” issues, with brief reference to some sample challenges, we devote attention to the challenges raised by the new world of “BigData” and to some new ways of approaching the classic Grand Challenge of the Holy Grail (where one merely states the problem and the computer solves it). There can, of course, never be a definitive catalogue of Grand Challenges. The ultimate Grand Challenge is for everyone working on Constraint Programming to look up on occasion from their everyday pursuits to consider how they might contribute to a Grand Challenge, and even to try their hand at formulating their own Grand Challenges.


Grand challenges in constraint programming Constraint programming Big data 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bent, R. & Hentenryck, P.V. (2005). Online stochastic optimization without distributions. In S. Biundo, K.L. Myers, K. Rajan (Eds.), ICAPS (pp. 171–180). AAAI.Google Scholar
  2. 2.
    Bruss, F.T. (2000). Sum the odds to one and stop. Annals of Probability, 28, 1384–1391.CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Darwiche, A. & Marquis, P. (2002). A knowledge compilation map. Journal of Artificial Intelligence Research (JAIR), 17, 229–264.MATHMathSciNetGoogle Scholar
  4. 4.
    Faltings, B. & Macho-Gonzalez, S. (2003). Open constraint optimization. In F. Rossi (Ed.), CP. Lecture notes in computer science (Vol. 2833, pp. 303–317). Springer.Google Scholar
  5. 5.
    Faltings, B. & Macho-Gonzalez, S. (2005). Open constraint programming. Artificial Intelligence, 161(1–2), 181–208.CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Freuder, E.C. (1997). In pursuit of the Holy Grail. Constraints, 2(1), 57–61.CrossRefGoogle Scholar
  7. 7.
    Freuder, E.C. (2007). Holy Grail redux. Constraint Programming Letters, 1(1), 3–5.MathSciNetGoogle Scholar
  8. 8.
    Giannotti, F., Nanni, M., Pedreschi, D., Pinelli, F., Renso, C., Rinzivillo, S., Trasarti, R. (2010). Mobility data mining: discovering movement patterns from trajectory data. In D.G. Geers & S. Timpf (Eds.), Computational transportation science (pp. 7–10). ACM.Google Scholar
  9. 9.
    Greenberg, A.G., Hamilton, J.R., Maltz, D.A., Patel, P. (2009). The cost of a cloud: research problems in data center networks. Computer Communication Review, 39(1), 68–73.CrossRefGoogle Scholar
  10. 10.
    Hentenryck, P.V. & Bent, R. (2006). Online stochastic combinatorial optimization. MIT Press.Google Scholar
  11. 11.
    Ikonomovska, E., Gama, J., Sebastião, R., Gjorgjevik, D. (2009). Regression trees from data streams with drift detection. In J. Gama, V.S. Costa, A.M. Jorge, P. Brazdil (Eds.), Discovery science. Lecture notes in computer science (Vol. 5808, pp. 121–135). Springer.Google Scholar
  12. 12.
    Laporte, G., Musmanno, R., Vocaturo, F. (2010). An adaptive large neighbourhood search heuristic for the capacitated arc-routing problem with stochastic demands. Transportation Science, 44(1), 125–135.CrossRefGoogle Scholar
  13. 13.
    Mackworth, A.K. (2000). Constraint-based agents: the ABC’s of CBA’s. In R. Dechter (Ed.), CP. Lecture notes in computer science (Vol. 1894, pp. 1–10). Springer.Google Scholar
  14. 14.
    Maher, M.J. (2009). Soggy constraints: soft open global constraints. In I.P. Gent (Ed.), CP. Lecture notes in computer science (Vol. 5732, pp. 584–591). Springer.Google Scholar
  15. 15.
    Neidermeier, R. (2006). Invitation to fixed parameter algorithms (Oxford lecture series in mathematics and its applications). USA: Oxford University Press.CrossRefGoogle Scholar
  16. 16.
    Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V. (2007). Algorithmic game theory. New York: Cambridge University Press.CrossRefMATHGoogle Scholar
  17. 17.
    Perron, L., Shaw, P., Furnon, V. (2004). Propagation guided large neighborhood search. In M. Wallace (Ed.), CP. Lecture notes in computer science (Vol. 3258, pp. 468–481). Springer.Google Scholar
  18. 18.
    Qureshi, A., Weber, R., Balakrishnan, H., Guttag, J.V., Maggs, B.V. (2009). Cutting the electric bill for internet-scale systems. In SIGCOMM (pp. 123–134).Google Scholar
  19. 19.
    Rossi, F., Beek, P.v., Walsh, T. (2006). Handbook of constraint programming. Foundations of artificial intelligence. New York: Elsevier.Google Scholar
  20. 20.
    Roughgarden, T. (2006). On the severity of Braess’s paradox: designing networks for selfish users is hard. Journal of Computer and System Sciences, 72(5), 922–953.CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Srikantaiah, S., Kansal, A., Zhao, F. (2008). Energy aware consolidation for cloud computing. In Proceedings of HotPower.Google Scholar
  22. 22.
    Valiant, G. & Roughgarden, T. (2006). Braess’s paradox in large random graphs. In J. Feigenbaum, J.C.I. Chuang, D.M. Pennock (Eds.), ACM conference on electronic commerce (pp. 296–305). ACM.Google Scholar
  23. 23.
    Verfaillie, G. & Jussien, N. (2005). Constraint solving in uncertain and dynamic environments: a survey. Constraints, 10(3), 253–281.CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Zheng, D., Ge, W., Zhang, J. (2009). Distributed opportunistic scheduling for ad hoc networks with random access: an optimal stopping approach. IEEE Transactions on Information Theory, 55(1), 205–222.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Cork Constraint Computation Centre, Department of Computer ScienceUniversity College CorkCorkIreland

Personalised recommendations