Advertisement

Constraints

, Volume 19, Issue 2, pp 186–194 | Cite as

Collective decision making: a great opportunity for constraint reasoning

  • Francesca Rossi
Article

Abstract

Collective decision making is an area of increasingly growing interest, mainly due to the rise of many IT-enabled environments where people connect and share information with others. We believe that constraint reasoning can have a major impact in this field, by providing general and flexible frameworks to model agents’ preferences over the alternative decisions, efficient algorithms to compute the best individual and collective decisions, and innovative approaches to deal with missing information. However, in order to do this, we claim that constraint reasoning should increase its efforts to open up to other research areas, such as voting and game theory, multi-agent systems, machine learning, and reasoning under uncertainty.

Keywords

Constraint reasoning Collective decision making Social networks Voting and game theory Multi-agent systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arrow, K., Sen, A., Suzumura, K. (2002). Handbook of social choice and welfare. North Holland.Google Scholar
  2. 2.
    Badaloni, S., Falda, M., Giacomin, M. (2004). Integrating quantitative and qualitative constraints in fuzzy temporal networks. AI Communications, 17(4), 183–272.MathSciNetGoogle Scholar
  3. 3.
    Bartholdi, J.J., Tovey, C.A., Trick, M.A. (1989). The computational difficulty of manipulating an election. Social Choice and Welfare, 6(3), 227–241.CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bistarelli, S., Montanari, U., Rossi, F. (1997). Semiring-based constraint satisfaction and optimization. Journal of ACM, 44(2), 201–236.CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Bistarelli, S., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G., Fargier, H. (1999). Semiring-based CSPs and valued CSPs: Frameworks, properties, and comparison. Constraints, 4(3), 199–240.CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D. (2004). CP-nets: A tool for representing and reasoning with conditional ceteris paribus preference statements. Journal of Artificial Intelligence Research (JAIR), 21, 135–191.zbMATHMathSciNetGoogle Scholar
  7. 7.
    Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D. (2004) Preference-based constraint optimization. Computational Intelligence, 20(2), 137–157.CrossRefMathSciNetGoogle Scholar
  8. 8.
    Brafman, R.I., & Dimopoulos, Y. (2004). A new look at the semantics and optimization methods of CP-networks. Computational Intelligence, 20(2), 218–245.CrossRefMathSciNetGoogle Scholar
  9. 9.
    Brandt, F., Conitzer, V., Endriss, U. (2012). Computational social choice. In: G. Weiss (Ed.), Multiagent systems. MIT Press.Google Scholar
  10. 10.
    Chevaleyre, Y., Endriss, U., Lang, J., Maudet, N. (2007). A short introduction to computational social choice. In Proc. SOFSEM 2007 (pp. 51–69).Google Scholar
  11. 11.
    Conen, W., & Sandholm, T. (2006). Preference elicitation in combinatorial auctions: Extended abstract. In: Cramton, Shoham, Steinberg (Eds.) Combinatorial auctions. MIT Press.Google Scholar
  12. 12.
    Dalla Pozza, G., Pini, M., Rossi, F., Venable, K. (2011). Multi-agent soft constraint aggregation via sequential voting. In Proc. IJCAI 2011.Google Scholar
  13. 13.
    Domshlak, C., Rossi, F., Venabl,e K.B., Walsh, T. (2003). Reasoning about soft constraints and conditional preferences: Complexity results and approximation techniques. In Proc. IJCAI 2003 (pp. 215–220). Morgan Kaufmann.Google Scholar
  14. 14.
    Gelain, M., Pini, M.S., Rossi, F., Venable, K.B., Walsh, T. (2010). Elicitation strategies for soft constraint problems with missing preferences: Properties, algorithms and experimental studies. Journal of Artificial Intelligence, 174, 270–294.CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Grandi, U., Loreggia, A., Rossi, F., Venable, K.B., Walsh, T. (2013). Restricted manipulation in iterative voting: Convergence and condorcet efficiency. In Proc. 1st international workshop on Strategic Reasoning (SR-2013).Google Scholar
  16. 16.
    Hyuckchul, J., Milind, T., Shriniwas, K. (2001). Argumentation as distributed constraint satisfaction: Applications and results. In Proc. international conference on autonomous agents (Agents’01).Google Scholar
  17. 17.
    Lang, J., & Xia, L. (2009). Sequential composition of voting rules in multi-issue domains. Mathematical Social Sciences, 57(3), 304–324.CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Maran, A., Maudet, N., Pini, M.S., Rossi, F., Venable, K.B. (2013). A framework for aggregating influenced cp-nets and its resistance to bribery. In Proc. AAAI 2013. AAAI Press.Google Scholar
  19. 19.
    Mattei, N., Pini, M.S., Rossi, F., Venable, K.B. (2013). Bribery in voting with CP-nets. Annals of Mathematics and Artificial Intelligence (to appear).Google Scholar
  20. 20.
    Meseguer, P., Rossi, F., Schiex, T. (2006). Soft constraints. In Handbook of constraint programming (Chap. 9, pp. 281–328). Elsevier.Google Scholar
  21. 21.
    Moffitt, M.D., & Pollack, M.E. (2006). Temporal preference optimization as weighted constraint satisfaction. In Proc. AAAI 2006. AAAI Press.Google Scholar
  22. 22.
    O’Connell, S., O’Sullivan, B., Freuder, E. (2002). Strategies for interactive constraint acquisition. In Proc. CP 2002. LNCS (Vol. 2470). Springer.Google Scholar
  23. 23.
    Pini, M.S., Rossi, F., Venable, K.B. (2013). Bribery in voting with soft constraints. In Proc. AAAI 2013. AAAI Press.Google Scholar
  24. 24.
    Prestwich, S.D., Rossi, F., Venable, K.B., Walsh, T. (2005). Constraint-based preferential optimization. In Proc. AAAI, AAAI Press (pp. 461–466). The MIT Press.Google Scholar
  25. 25.
    Rossi, F., Van Beek, P., Walsh, T. (2006). Handbook for constraint programming. Elsevier.Google Scholar
  26. 26.
    Rossi, F., & Sperduti, A. (1998). Learning solution preferences in constraint problems. Journal of Experimental and Theoretical Artificial Intelligence, 10(1), 103–116.CrossRefzbMATHGoogle Scholar
  27. 27.
    Vu, X.H., & O’Sullivan, B. (2007). Semiring-based constraint acquisition. In Proc. ICTAI 2007 (pp. 251–258). IEEE Computer Society.Google Scholar
  28. 28.
    Wilson, N., Grimes, D., Freuder, E.C. (2007). A cost-based model and algorithms for interleaving solving and elicitation of CSPs. In Proc. CP 2007. LNCS (Vol. 4741, pp. 666–680). Springer.Google Scholar
  29. 29.
    Xia, L., Conitzer, V., Lang, J. (2011). Strategic sequential voting in multi-issue domains and multiple-election paradoxes. In Proc. EC 2011.Google Scholar
  30. 30.
    Zuckerberg, M. (2013). Mark Zuckerberg on Facebook Home, Money, and the Future of Communication. Wired, April 2013.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of PadovaPadovaItaly

Personalised recommendations