Constraints

, Volume 19, Issue 2, pp 139–149 | Cite as

Toward sustainable development in constraint programming

  • Nicolas Beldiceanu
  • Pierre Flener
  • Jean-Noël Monette
  • Justin Pearson
  • Helmut Simonis
Article

Abstract

We present a few challenges that we consider important to tackle for the future of constraint programming. The focus is put on simplifying the design and implementation of propagators in solvers.

Keywords

Global constraints Combinatorial structure Sustainable solver development 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdennadher, S., & Rigotti, C. (2005). Automatic generation of CHR constraint solvers. Theory and Practice of Logic Programming, 5(4), 403–418.CrossRefMATHGoogle Scholar
  2. 2.
    Beldiceanu, N., Carlsson, M., Petit, T. (2004). Deriving filtering algorithms from constraint checkers. In M.G. Wallace (Ed.), CP 2004. LNCS (Vol. 3258, pp. 107–122). Springer.Google Scholar
  3. 3.
    Beldiceanu, N., Carlsson, M., Petit, T., Régin, J.C. (2012). An O(nlogn) bound consistency algorithm for the conjunction of an alldifferent and an inequality between a sum of variables and a constant, and its generalization. In L.D. Raedt, C. Bessière, D. Dubois, P. Doherty, P. Frasconi, F. Heintz, P.J.F. Lucas (Eds.), ECAI 2012 (pp. 145–150). IOS Press.Google Scholar
  4. 4.
    Beldiceanu, N., Carlsson, M., Poder, E., Sadek, R., Truchet, C. (2007). A generic geometrical constraint kernel in space and time for handling polymorphic k-dimensional objects. In C. Bessière (Ed.), CP 2007. LNCS (Vol. 4741, pp. 180–194). Springer.Google Scholar
  5. 5.
    Beldiceanu, N., Carlsson, M., Rampon, J.X. (2012). Global constraint catalog 2nd edn. (revision a). Tech. Rep. T2012:03, Swedish Institute of Computer Science. Available at http://soda.swedish-ict.se/5195.
  6. 6.
    Beldiceanu, N., Petit, T., Rochart, G. (2006). Bounds of parameters for global constraints. RAIRO Operations Research, 40(4), 327–353.CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Beldiceanu, N., & Simonis, H. (2011). A constraint seeker: Finding and ranking global constraints from examples. In J.H.M. Lee (Ed.), CP 2011. LNCS (Vol. 6876, pp. 12–26). Springer.Google Scholar
  8. 8.
    Berger, M. (2010). Geometry revealed, a Jacob’s ladder to modern higher geometry. Springer.Google Scholar
  9. 9.
    Carlsson, M., Beldiceanu, N., Martin, J. (2008). A geometric constraint over k-dimensional objects and shapes subject to business rules. In P.J. Stuckey (Ed.), CP 2008. LNCS (Vol. 5202, pp. 220–234). Springer.Google Scholar
  10. 10.
    Colmerauer, A. (1996). Les bases de Prolog IV. Internal publication of the Laboratoire d’Informatique de Marseille, France. Available at http://alain.colmerauer.free.fr/.
  11. 11.
    Dao, T.B.H., Lallouet, A., Legtchenko, A., Martin, L. (2002). Indexical-based solver learning. In P. Van Hentenryck (Ed.), CP 2002. LNCS (Vol. 2470, pp. 541–555). Springer.Google Scholar
  12. 12.
    Deransart, P., Hermenegildo, M.V., Maluszynski, J. (Eds.) (2000). Analysis and visualization tools for constraint programming, constraint debugging (DiSCiPl project). LNCS (Vol. 1870). Springer.Google Scholar
  13. 13.
    Diaz, D., & Codognet, P. (1993). A minimal extension of the WAM for clp(FD). In ICLP 1993 (pp. 774–790). The MIT Press.Google Scholar
  14. 14.
    Dooms, G., Van Hentenryck, P., Michel, L. (2009). Model-driven visualizations of constraint-based local search. Constraints, 14(3), 294–324.CrossRefMATHGoogle Scholar
  15. 15.
    de la Higuera, C. (2010). Grammatical inference: Learning automata and grammars. Cambridge University Press.Google Scholar
  16. 16.
    Jussien, N. (2003). The versatility of using explanations within constraint programming. Habilitation thesis, Université de Nantes, France. Available at http://tel.archives-ouvertes.fr/tel-00293905.
  17. 17.
    Laurière, J.L. (1978). A language and a program for stating and solving combinatorial problems. Artificial Intelligence, 10(1), 29–127.CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Letort, A., Beldiceanu, N., Carlsson, M. (2012). A scalable sweep algorithm for the cumulative constraint. In M. Milano (Ed.), CP 2012. LNCS (Vol. 7514, pp. 439–454). Springer.Google Scholar
  19. 19.
    Lustig, I.J., & Puget, J.F. (2001). Program does not equal program: constraint programming and its relationship to mathematical programming. Interfaces, 31(6), 29–53.CrossRefGoogle Scholar
  20. 20.
    Mehta, D., O’Sullivan, B., Simonis, H. (2012). Comparing solution methods for the machine reassignment problem. In M. Milano (Ed.), CP 2012. LNCS (Vol. 7514, pp. 782–797).Google Scholar
  21. 21.
    Monette, J.N., Beldiceanu, N., Flener, P., Pearson, J. (2013). A parametric propagator for discretely convex pairs of sum constraints. In C. Schulte (Ed.), CP 2013. LNCS (Vol. 8124, pp. 529–544). Springer.Google Scholar
  22. 22.
    Monette, J.N., Flener, P., Pearson, J. (2012). Towards solver-independent propagators. In M. Milano (Ed.), CP 2012. LNCS (Vol. 7514, pp. 544–560). Springer.Google Scholar
  23. 23.
    Oncina, J., & Garcia, P. (1992). Identifying regular languages in polynomial time. In Advances in structural and syntactic pattern recognition (Vol. 5, pp. 99–108).Google Scholar
  24. 24.
    O’Sullivan, B. (2011). CP panel position – The future of CP. Available at http://www.dmi.unipg.it/cp2011/downloads/slides/panel/osullivan.pdf.
  25. 25.
    Pesant, G. (2004). A regular language membership constraint for finite sequences of variables. In M.G. Wallace (Ed.), CP 2004. LNCS (Vol. 3258, pp. 482–495). Springer.Google Scholar
  26. 26.
    Petit, T., Beldiceanu, N., Lorca, X. (2011). A generalized arc-consistency algorithm for a class of counting constraints. In IJCAI 2011 (pp. 643–648). AAAI Press / IJCAI. Revised edition available at http://arxiv.org/abs/1110.4719.
  27. 27.
    Prosser, P. (2012). Exact algorithms for maximum clique: a computational study. Tech. Rep. 2012-333, Department of Computer Science, Glasgow University, Scotland. Available at http://arxiv.org/abs/1207.4616.
  28. 28.
    Raiser, F. (2008). Semi-automatic generation of CHR solvers for global constraints. In P.J. Stuckey (Ed.), CP 2008. LNCS (Vol. 5202, pp. 588–592). Springer.Google Scholar
  29. 29.
    Shaw, P. (1998). Using constraint programming and local search methods to solve vehicle routing problems. In M.J. Maher, J.F. Puget (Eds.), CP 1998. LNCS (Vol. 1520, pp. 417–431). Springer.Google Scholar
  30. 30.
    Simonis, H., Aggoun, A., Beldiceanu, N., Bourreau, E. (2000). Complex constraint abstraction: Global constraint visualisation. In P. Deransart, M.V. Hermenegildo, J. Maluszynski, (Eds.), Analysis and visualization tools for constraint programming, constraint debugging (DiSCiPl project). LNCS (Vol. 1870, pp. 299–317). Springer.Google Scholar
  31. 31.
    Simonis, H., Davern, P., Feldman, J., Mehta, D., Quesada, L., Carlsson, M. (2010). A generic visualization platform for CP. In J.H.M. Lee (Ed.), CP 2010. LNCS (Vol. 6308, pp. 460–474). Springer.Google Scholar
  32. 32.
    Tack, G., Schulte, C., Smolka, G. (2006). Generating propagators for finite set constraints. In F. Benhamou (Ed.), CP 2006. LNCS (Vol. 4204, pp. 575–589). Springer.Google Scholar
  33. 33.
    Van Hentenryck, P., & Michel, L. (2007). Constraint-based local search. The MIT Press.Google Scholar
  34. 34.
    Van Hentenryck, P., Saraswat, V., Deville, Y. Design, implementation, and evaluation of the constraint language cc(FD). Tech. Rep. CS-93-02, Brown University, Providence, USA (1993). Based on the unpublished manuscript Constraint Processing in cc(FD), 1991.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Nicolas Beldiceanu
    • 1
  • Pierre Flener
    • 2
  • Jean-Noël Monette
    • 2
  • Justin Pearson
    • 2
  • Helmut Simonis
    • 3
  1. 1.TASC team (CNRS/INRIA)Mines de NantesNantesFrance
  2. 2.Department of Information TechnologyUppsala UniversityUppsalaSweden
  3. 3.4C, University College CorkCorkIreland

Personalised recommendations