Advertisement

Constraints

, Volume 18, Issue 4, pp 535–578 | Cite as

Models and emerging trends of concurrent constraint programming

  • Carlos Olarte
  • Camilo Rueda
  • Frank D. Valencia
Survey

Abstract

Concurrent Constraint Programming (CCP) has been used over the last two decades as an elegant and expressive model for concurrent systems. It models systems of agents communicating by posting and querying partial information, represented as constraints over the variables of the system. This covers a vast variety of systems as those arising in biological phenomena, reactive systems, net-centric computing and the advent of social networks and cloud computing. In this paper we survey the main applications, developments and current trends of CCP.

Keywords

Concurrent constraint programming Concurrency Specification Verification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abadi, M., & Gordon, A.D. (1999). A calculus for cryptographic protocols: The spi calculus. Information and Computation, 148(1), 1–70.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Allombert, A., Desainte-Catherine, M., Assayag, G. (2008). Iscore: a system for writing interaction. In Tsekeridou, S., Cheok, A.D., Giannakis, K., Karigiannis, J. (Eds.) DIMEA, ACM International Conference Proceeding Series (vol. 349, pp. 360–367). ACM.Google Scholar
  3. 3.
    Alpuente, M., Falaschi, M., Villanueva, A. (2004). A symbolic model checker for tccp programs. In Guelfi, N. (Ed.) RISE, LNCS (vol. 3475, pp. 45–56). Springer.Google Scholar
  4. 4.
    Alpuente, M., Gramlich, B., Villanueva, A. (2007). A framework for timed concurrent constraint programming with external functions. ENTCS, 188, 143–155.Google Scholar
  5. 5.
    Alpuente, M., del Mar Gallardo, M., Pimentel, E., Villanueva, A. (2005). A semantic framework for the abstract model checking of tccp programs. Theoretical Computer Science, 346(1), 58–95.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Alpuente, M., del Mar Gallardo, M., Pimentel, E., Villanueva, A. (2006). Verifying real-time properties of tccp programs. Journal of Universal Computer Science, 12(11), 1551–1573.MathSciNetGoogle Scholar
  7. 7.
    Alpuente, M., del Mar Gallardo, M., Pimentel, E., Villanueva, A. (2008). An abstract analysis framework for synchronous concurrent languages based on source-to-source transformation. ENTCS, 206, 3–21.Google Scholar
  8. 8.
    Amadio, R.M., Lugiez, D., Vanackère, V. (2003). On the symbolic reduction of processes with cryptographic functions. Theoretical Computer Science, 290(1), 695–740.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Aranda, J., Pérez, J.A., Rueda, C., Valencia, F.D. (2008). Stochastic behavior and explicit discrete time in concurrent constraint programming. In de la Banda, M.G., & Pontelli, E. (Eds.) Logic Programming, 24th Int. Conference, ICLP 2008, Udine, Italy, December 9–13 2008, Proceedings, LNCS (vol. 5366, pp. 682–686). Springer.Google Scholar
  10. 10.
    Arbelaez, A., Gutierrez, J., Perez, J.A. (2006). Timed concurrent constraint programming in systems biology. Newsletter of the Association for Logic Programming, 19(4).Google Scholar
  11. 11.
    Aristizábal, A., Bonchi, F., Palamidessi, C., Pino, L.F., Valencia, F.D. (2011). Deriving labels and bisimilarity for concurrent constraint programming. In M. Hofmann (Ed.) FOSSACS, LNCS, (vol. 6604, pp. 138–152). Springer.Google Scholar
  12. 12.
    Aristizábal, A., Bonchi, F., Valencia, F.D., Pino, L.F. (2012). Partition refinement for bisimilarity in ccp. In Ossowski, S., & Lecca, P. (Eds.) Proceedings of the ACM Symposium on Applied Computing, SAC 2012, Riva, Trento, Italy, March 26–30, 2012 (pp. 88–93). ACM.Google Scholar
  13. 13.
    Assayag, G., Dubnov, S., Rueda, C. (2006). A concurrent constraints factor oracle model for music improvisation. In Proc. of CLEI 2006.Google Scholar
  14. 14.
    de la Banda, M.G., & Pontelli, E. (Eds.) (2008). Logic Programming, 24th Int. Conference, ICLP 2008, Udine, Italy, December 9–13 2008, Proceedings, LNCS (vol. 5366). Springer.Google Scholar
  15. 15.
    Barahona, P., & Felty, A.P. (Eds.) (2005). Proceedings of the 7th International ACM SIGPLAN Conference on Principles and Practice of Declarative Programming, July 11–13 2005, Lisbon, Portugal. ACM.Google Scholar
  16. 16.
    Barco, A., Knight, S., Valencia, F. (2012). K-stores A spatial and epistemic concurrent constraint interpreter. In Proc. of WFLP’12.Google Scholar
  17. 17.
    Bartoletti, M., & Zunino, R. (2010). A calculus of contracting processes. In LICS (pp. 332–341). IEEE Computer Society.Google Scholar
  18. 18.
    Bengtson, J., Johansson, M., Parrow, J., Victor, B. (2011). Psi-calculi: a framework for mobile processes with nominal data and logic. Logical Methods in Computer Science, 7(1).Google Scholar
  19. 19.
    Bergstra, J.A., & Klop, J.W. (1985). Algebra of communicating processes with abstraction. Theoretical Computer Science, 37, 77–121.MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Berry, G., & Gonthier, G. (1992). The esterel synchronous programming language: Design, semantics, implementation. Science of Computer Programming, 19(2), 87–152.zbMATHCrossRefGoogle Scholar
  21. 21.
    Bertolino, M., Etalle, S., Palamidessi, C. (1999). The replacement operation for ccp programs. In Bossi, A. (Ed.) LOPSTR, LNCS, (vol. 1817, pp. 216–233). Springer.Google Scholar
  22. 22.
    Best, E., de Boer, F., Palamidessi, C. (1995). Concurrent constraint programming with information removal. In First Workshop on Concurrent Constraint Programming.Google Scholar
  23. 23.
    Best, E., de Boer, F.S., Palamidessi, C. (1997). Partial order and sos semantics for linear constraint programs. In Garlan, D., & Métayer, D.L. (Eds.) COORDINATION, LNCS (vol. 1282, pp. 256–273). Springer.Google Scholar
  24. 24.
    Betz, H., & Frühwirth, T.W. (2005). A linear-logic semantics for constraint handling rules. In van Beek, P. (Ed.) CP, LNCS (vol. 3709, pp. 137–151). Springer.Google Scholar
  25. 25.
    Bistarelli, S. (2004). Semirings for Soft Constraint Solving and Programming. In LNCS (vol. 2962). Springer.Google Scholar
  26. 26.
    Bistarelli, S., Bottalico, M., Santini, F. (2009). Constraint-based languages to model the blood coagulation cascade. In Ferilli, S., & Malerba, D. (Eds.) Logic-Based Approaches in Bioinformatics (pp. 32–41).Google Scholar
  27. 27.
    Bistarelli, S., Campli, P., Santini, F.: A secure coordination of agents with nonmonotonic soft concurrent constraint programming. In Ossowski, S., & Lecca, P. (Eds.) Proceedings of the ACM Symposium on Applied Computing, SAC 2012, Riva, Trento, Italy, March 26–30, 2012 (pp. 1551–1553). ACM.Google Scholar
  28. 28.
    Bistarelli, S., Gabbrielli, M., Meo, M.C., Santini, F. (2008). Timed soft concurrent constraint programs. In Lea, D., & Zavattaro, G. (Eds.) COORDINATION, LNCS (vol. 5052, pp. 50–66). Springer.Google Scholar
  29. 29.
    Bistarelli, S., Montanari, U., Rossi, F. (2006). Soft concurrent constraint programming. ACM Transactions On Computational Logic, 7(3), 563–589.MathSciNetCrossRefGoogle Scholar
  30. 30.
    Bistarelli, S., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G., Fargier, H. (1999). Semiring-based CSPs and valued CSPs: Frameworks, properties, and comparison. Constraints, 4(3), 199–240.MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Bistarelli, S., Santini, F. (2011). A nonmonotonic soft concurrent constraint language to model the negotiation process. Fundamenta Informaticae, 111(3), 257–279.MathSciNetzbMATHGoogle Scholar
  32. 32.
    Bockmayr, A., & Courtois, A. (2002). Using hybrid concurrent constraint programming to model dynamic biological systems. In Stuckey, P.J. (Ed.) ICLP, LNCS (vol. 2401, pp. 85–99). Springer.Google Scholar
  33. 33.
    de Boer, F.S., Gabbrielli, M., Marchiori, E., Palamidessi, C. (1997). Proving concurrent constraint programs correct. ACM Transactions on Programming Languages and Systems, 19(5), 685–725.CrossRefGoogle Scholar
  34. 34.
    de Boer, F.S., Gabbrielli, M., Meo, M.C. (2000). A timed concurrent constraint language. Information and Computation, 161(1), 45–83.MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    de Boer, F.S., Gabbrielli, M., Meo, M.C. (2004). Proving correctness of timed concurrent constraint programs. ACM Transactions On Computational Logic, 5(4), 706–731.MathSciNetCrossRefGoogle Scholar
  36. 36.
    de Boer, F.S., Gabbrielli, M., Palamidessi, C. (1996). Proving correctness of constraint logic programs with dynamic scheduling. In Cousot, R., & Schmidt, D.A. (Eds.) SAS, LNCS (vol. 1145, pp. 83–97). Springer.Google Scholar
  37. 37.
    de Boer, F.S., Kok, J.N., Palamidessi, C., Rutten, J.J.M.M. (1989). Control flow versus logic: A denotational and a declarative model for guarded horn clauses. In Kreczmar, A., & Mirkowska, G. (Eds.) MFCS, LNCS (vol. 379, pp. 165–176). Springer.Google Scholar
  38. 38.
    de Boer, F.S., Kok, J.N., Palamidessi, C., Rutten, J.J.M.M. (1989). Semantic models for a version of parlog. In ICLP (pp. 621–636).Google Scholar
  39. 39.
    de Boer, F.S., & Palamidessi, C. (1991). A fully abstract model for concurrent constraint programming. In Abramsky, S., & Maibaum, T.S.E. (Eds.) TAPSOFT, Vol. 1, LNCS, (vol. 493, pp. 296–319). Springer.Google Scholar
  40. 40.
    de Boer, F.S., & Palamidessi, C. (1992). On the semantics of concurrent constraint programming. In ALPUK (pp. 145–173).Google Scholar
  41. 41.
    de Boer, F.S., Pierro, A.D., Palamidessi, C. (1995). Nondeterminism and infinite computations in constraint programming. Theoretical Computer Science, 151(1), 37–78.MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Boreale, M. (2001). Symbolic trace analysis of cryptographic protocols. In Orejas, F., Spirakis, P.G., van Leeuwen, J. (Eds.) ICALP, LNCS (vol. 2076, pp. 667–681). Springer.Google Scholar
  43. 43.
    Borning, A. (Ed.) (1994). Principles and Practice of Constraint Programming, Second International Workshop, PPCP’94, Rosario, Orcas Island, Washington, USA, May 2–4, 1994, Proceedings, LNCS (vol. 874). Springer.Google Scholar
  44. 44.
    Bortolussi, L., & Policriti, A. (2008). Modeling biological systems in stochastic concurrent constraint programming. Constraints, 13(1–2), 66–90.Google Scholar
  45. 45.
    Bortolussi, L., & Wiklicky, H. (2005). A distributed and probabilistic concurrent constraint programming language. In Gabbrielli, M., & Gupta, G. (Eds.) ICLP, Lecture Notes in Computer Science (vol. 3668, pp. 143–158). Springer.Google Scholar
  46. 46.
    Bottalico, M., & Bistarelli, S. (2009). Constraint based languages for biological reactions. In Hill, P.M., & Warren, D.S. (Eds.) Logic Programming, 25th International Conference, ICLP 2009, Pasadena, CA, USA, July 14–17, 2009. Proceedings, LNCS (vol. 5649, pp. 561–562). Springer.Google Scholar
  47. 47.
    Brookes, S.D., Hoare, C.A.R., Roscoe, A.W. (1984). A theory of communicating sequential processes. Journal of ACM, 31(3), 560–599.MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Bueno, F., Hermenegildo, M.V., Montanari, U., Rossi, F. (1998). Partial order and contextual net semantics for atomic and locally atomic cc programs. Science of Computer Programming, 30(1–2), 51–82.Google Scholar
  49. 49.
    Buscemi, M.G., Coppo, M., Dezani-Ciancaglini, M., Montanari, U. (2011). Constraints for service contracts. In Bruni, R., & Sassone, V. (Eds.) TGC, LNCS, (vol. 7173, pp. 104–120). Springer.Google Scholar
  50. 50.
    Buscemi, M.G., & Montanari, U. (2007). CC-Pi: A constraint-based language for specifying service level agreements. In De Nicola, R. (Ed.) ESOP, LNCS (vol. 4421, pp. 18–32). Springer.Google Scholar
  51. 51.
    Buscemi, M.G., & Montanari, U. (2008). Open bisimulation for the concurrent constraint pi-calculus. In Drossopoulou, S. (Ed.) ESOP, LNCS (vol. 4960, pp. 254–268). Springer.Google Scholar
  52. 52.
    Buscemi, M.G., & Montanari, U. (2011). CC-Pi: A constraint language for service negotiation and composition. In Wirsing, M., & Hölzl, M.M. (Eds.) Results of the SENSORIA Project, LNCS (vol. 6582, pp. 262–281). Springer.Google Scholar
  53. 53.
    Buscemi, M.G., & Montanari, U. (2011). Qos negotiation in service composition. Journal of Logic and Algebraic Programming, 80(1), 13–24.MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Campli, P., Bistarelli, S. (2009). Capturing fair computations on concurrent constraint language. In Hill, P.M., & Warren, D.S. (Eds.) Logic Programming, 25th International Conference, ICLP 2009, Pasadena, CA, USA, July 14–17, 2009. Proceedings, LNCS (vol. 5649, pp. 559–560). Springer.Google Scholar
  55. 55.
    Cardelli, L., & Gordon, A.D. (1998). Mobile ambients. In Nivat, M. (Ed.) FoSSaCS, LNCS (vol. 1378, pp. 140–155). Springer.Google Scholar
  56. 56.
    Carlson, B., Haridi, S., Janson, S. (1994). AKL(FD) - a concurrent language for FD programming. In SLP (pp. 521–535).Google Scholar
  57. 57.
    Chiarugi, D., Falaschi, M., Olarte, C., Palamidessi, C. (2010). Compositional modelling of signalling pathways in timed concurrent constraint programming. In Zhang, A., Borodovsky, M., Özsoyoglu, G., Mikler, A.R. (Eds.) BCB (pp. 414–417). ACM.Google Scholar
  58. 58.
    Comini, M., Titolo, L., Villanueva, A. (2011). Abstract diagnosis for timed concurrent constraint programs. TPLP, 11(4–5), 487–502.Google Scholar
  59. 59.
    Coppo, M., & Dezani-Ciancaglini, M. (2008). Structured communications with concurrent constraints. In Kaklamanis, C., & Nielson, F. (Eds.) TGC, LNCS (vol. 5474, pp. 104–125). Springer.Google Scholar
  60. 60.
    Cousot, P., & Cousot, R. (1992). Abstract interpretation and application to logic programs. Journal of Logic Programming, 13(2 & 3), 103–179.Google Scholar
  61. 61.
    Crazzolara, F., & Winskel, G. (2001). Petri nets in cryptographic protocols. In IPDPS (p. 149). IEEE Computer Society.Google Scholar
  62. 62.
    Dahl, V., & Niemelä, I. (Eds.) (2007). Logic Programming, 23rd International Conference, ICLP 2007, Porto, Portugal, September 8–13, 2007, Proceedings, LNCS (vol. 4670). Springer.Google Scholar
  63. 63.
    Demoen, B., & Lifschitz, V. (Eds.) (2004). Logic Programming, 20th International Conference, ICLP 2004, Saint-Malo, France, September 6–10, 2004, Proceedings, LNCS (vol. 3132). Springer.Google Scholar
  64. 64.
    Dezani-Ciancaglini, M., & de’Liguoro, U. (2009). Sessions and session types: An overview. In Laneve, C., & Su, J. (Eds.) WS-FM, LNCS (vol. 6194, pp. 1–28). Springer.Google Scholar
  65. 65.
    Díaz, J.F., Gutierrez, G., Olarte, C.A., Rueda, C. (2004). Using constraint programming for reconfiguration of electrical power distribution networks. In Roy, P.V. (Ed.) MOZ, LNCS (vol. 3389, pp. 263–276). Springer.Google Scholar
  66. 66.
    Díaz, J.F., Rueda, C., Valencia, F.D. (1998). Pi+ − calculus: A calculus for concurrent processes with constraints. CLEI Electronic Journal, 1(2).Google Scholar
  67. 67.
    Dolev, D., & Yao, A.C.C. (1983). On the security of public key protocols. IEEE Transactions on Information Theory, 29(2), 198–207.MathSciNetzbMATHCrossRefGoogle Scholar
  68. 68.
    Dovier, A., & Pontelli, E. (Eds.) (2010). A 25-Year Perspective on Logic Programming: Achievements of the Italian Association for Logic Programming, GULP, LNCS (vol. 6125). Springer.Google Scholar
  69. 69.
    Dubois, D., Fargier, H., Prade, H. (1993). The calculus of fuzzy restrictions as a basis for flexible constraint satisfaction. In Proc. 2nd IEEE Conference on Fuzzy Systems (vol. 2, pp. 1131–1136). San Francisco, CA.Google Scholar
  70. 70.
    Duck, G.J., Stuckey, P.J., de la Banda, M.J.G., Holzbaur, C. (2004). The refined operational semantics of constraint handling rules. In Demoen, B., & Lifschitz, V. (Eds.) Logic Programming, 20th International Conference, ICLP 2004, Saint-Malo, France, September 6–10, 2004, Proceedings, LNCS (vol. 3132, pp. 90–104). Springer.Google Scholar
  71. 71.
    Duck, G.J., Stuckey, P.J., Sulzmann, M. (2007). Observable confluence for constraint handling rules. In Dahl, V., & Niemelä, I. (Eds.) Logic Programming, 23rd International Conference, ICLP 2007, Porto, Portugal, September 8–13, 2007, Proceedings, LNCS (vol. 4670, pp. 224–239). Springer.Google Scholar
  72. 72.
    Dücker, M., Lehrenfeld, G., Müller, W., Tahedl, C. (1997). A generic system for interactive real-time animation. In ECBS (pp. 263–270). IEEE Computer Society.Google Scholar
  73. 73.
    Etalle, S., Gabbrielli, M., Meo, M.C. (2001). Transformations of CCP programs. ACM Transactions on Programming Languages and Systems, 23(3), 304–395.Google Scholar
  74. 74.
    Eveillard, D., Ropers, D., de Jong, H., Branlant, C., Bockmayr, A. (2004). A multi-scale constraint programming model of alternative splicing regulation. Theoretical Computer Science, 325(1), 3–24.MathSciNetzbMATHCrossRefGoogle Scholar
  75. 75.
    Fages, F., Batt, G., Maria, E.D., Jovanovska, D., Rizk, A., Soliman, S. (2010). Computational systems biology in biocham. ERCIM News, 2010(82), 36.Google Scholar
  76. 76.
    Fages, F., de Oliveira Rodrigues, C.M., Martinez, T. (2008). Modular CHR with ask and tell. In Proc. of Fifth Workshop on Constraint Handling Rules.Google Scholar
  77. 77.
    Fages, F., Ruet, P., Soliman, S. (2001). Linear concurrent constraint programming: Operational and phase semantics. Information and Computation, 165(1), 14–41.MathSciNetzbMATHCrossRefGoogle Scholar
  78. 78.
    Fages, F., Soliman, S., Vianu, V. (1998). Expressiveness and complexity of concurrent constraint programming: a finite model theoretic approach. Technical Report 98–14, LIENS.Google Scholar
  79. 79.
    Falaschi, M., Gabbrielli, M., Marriott, K., Palamidessi, C. (1993). Compositional analysis for concurrent constraint programming. In LICS (pp. 210–221). IEEE Computer Society.Google Scholar
  80. 80.
    Falaschi, M., Gabbrielli, M., Marriott, K., Palamidessi, C. (1997). Confluence in concurrent constraint programming. Theoretical Computer Science, 183(2), 281–315.MathSciNetzbMATHCrossRefGoogle Scholar
  81. 81.
    Falaschi, M., Gabbrielli, M., Marriott, K., Palamidessi, C. (1997). Constraint logic programming with dynamic scheduling: A semantics based on closure operators. Information and Computation, 137(1), 41–67.MathSciNetzbMATHCrossRefGoogle Scholar
  82. 82.
    Falaschi, M., Olarte, C., Palamidessi, C. (2009). A framework for abstract interpretation of timed concurrent constraint programs. In Porto, A., & López-Fraguas, F.J. (Eds.) PPDP (pp. 207–218). ACM.Google Scholar
  83. 83.
    Falaschi, M., Olarte, C., Palamidessi, C., Valencia, F. (2007). Declarative diagnosis of temporal concurrent constraint programs. In Dahl, V., & Niemelä, I. (Eds.) Logic Programming, 23rd International Conference, ICLP 2007, Porto, Portugal, September 8–13, 2007, Proceedings, LNCS (vol. 4670, pp. 271–285). Springer.Google Scholar
  84. 84.
    Falaschi, M., Policriti, A., Villanueva, A. (2001). Modeling concurrent systems specified in a temporal concurrent constraint language-i. ENTCS, 48, 197–210.Google Scholar
  85. 85.
    Falaschi, M., & Villanueva, A. (2006). Automatic verification of timed concurrent constraint programs. TPLP 6(3), 265–300.MathSciNetzbMATHGoogle Scholar
  86. 86.
    Fournet, C., & Abadi, M. (2002). Hiding names: Private authentication in the applied pi calculus. In Okada, M., Pierce, B.C., Scedrov, A., Tokuda, H., Yonezawa, A. (Eds.) ISSS, LNCS (vol. 2609, pp. 317–338). Springer.Google Scholar
  87. 87.
    Franzén, T., Haridi, S., Janson, S. (1991). An overview of the andorra kernel language. In Eriksson, L.H., Hallnäs, L., Schroeder-Heister, P. (Eds.) ELP, LNCS (vol. 596, pp. 163–179). Springer.Google Scholar
  88. 88.
    Frühwirth, T., Michel, L., Schulte, C. (2006). Chapter 13 - constraints in procedural and concurrent languages. In Rossi, F., van Beek, P., Walsh, T. (Eds.) Handbook of Constraint Programming, Foundations of Artificial Intelligence (vol. 2, pp. 453–494). Elsevier.Google Scholar
  89. 89.
    Frühwirth, T.W. (1994). Constraint handling rules. In Constraint Programming (pp. 90–107).Google Scholar
  90. 90.
    Frühwirth, T.W. (1998). Theory and practice of constraint handling rules. Journal of Logic Programming, 37(1–3), 95–138.Google Scholar
  91. 91.
    Frühwirth, T.W. (2009). Constraint Handling Rules. Cambridge University Press.Google Scholar
  92. 92.
    Frühwirth, T.W., Pierro, A.D., Wiklicky, H. (2002). Probabilistic constraint handling rules. ENTCS, 76, 115–130.Google Scholar
  93. 93.
    Furukawa, K., & Ueda, K. (1988). Ghc - a language for a new age of parallel programming. In Nori, K.V., & Kumar, S. (Eds.) FSTTCS, Lecture Notes in Computer Science (vol. 338, pp. 364–376). Springer.Google Scholar
  94. 94.
    Gabbrielli, M., & Levi, G. (1990). Unfolding and fixpoint semantics of concurrent constraint logic programs. In Kirchner, H., & Wechler, W. (Eds.) ALP, LNCS (vol. 463, pp. 204–216). Springer.Google Scholar
  95. 95.
    Gabbrielli, M., Palamidessi, C., Valencia, F.D. (2010). Concurrent and reactive constraint programming. In Dovier, A., & Pontelli, E. (Eds.) A 25-Year Perspective on Logic Programming: Achievements of the Italian Association for Logic Programming, GULP, LNCS (vol. 6125, pp. 231–253). Springer.Google Scholar
  96. 96.
    Gilbert, D., & Palamidessi, C. (2000). Concurrent constraint programming with process mobility. In Lloyd, J.W., Dahl, V., Furbach, U., Kerber, M., Lau, K.K., Palamidessi, C., Pereira, L.M., Sagiv, Y., Stuckey, P.J. (Eds.) Computational Logic, LNCS (vol. 1861, pp. 463–477). Springer.Google Scholar
  97. 97.
    Girard, J.Y. (1987). Linear logic. Theoretical Computer Science, 50, 1–102.MathSciNetzbMATHCrossRefGoogle Scholar
  98. 98.
    Gupta, V., Jagadeesan, R., Panangaden, P. (1999). Stochastic processes as concurrent constraint programs. In Appel, A.W., & Aiken, A. (Eds.) POPL (pp. 189–202). ACM.Google Scholar
  99. 99.
    Gupta, V., Jagadeesan, R., Saraswat, V.A. (1996). Models for concurrent constraint programming. In Montanari, U., & Sassone, V. (Eds.) CONCUR, LNCS (vol. 1119, pp. 66–83). Springer.Google Scholar
  100. 100.
    Gupta, V., Jagadeesan, R., Saraswat, V.A. (1997). Probabilistic concurrent constraint programming. In Mazurkiewicz, A.W., & Winkowski, J. (Eds.) CONCUR, LNCS (vol. 1243, pp. 243–257). Springer.Google Scholar
  101. 101.
    Gupta, V., Jagadeesan, R., Saraswat, V.A. (1998). Computing with continuous change. Science of Computer Programming, 30(1–2), 3–49.Google Scholar
  102. 102.
    Gupta, V., Jagadeesan, R., Saraswat, V.A. (2002). Truly concurrent constraint programming. Theoretical Computer Science, 278(1–2), 223–255.Google Scholar
  103. 103.
    Gupta, V., Saraswat, V., Struss, P. (1995). A model of a photocopier paper path. In Proceedings of the 2nd IJCAI Workshop on Engineering Problems for Qualitative Reasoning.Google Scholar
  104. 104.
    Gutierrez, J., Pérez, J.A., Rueda, C., Valencia, F.D. (2007). Timed concurrent constraint programming for analysing biological systems. ENTCS, 171(2), 117–137.Google Scholar
  105. 105.
    Haemmerlé, R. (2011). Observational equivalences for linear logic concurrent constraint languages. TPLP, 11(4–5), 469–485.Google Scholar
  106. 106.
    Haemmerlé, R., Fages, F., Soliman, S. (2007). Closures and modules within linear logic concurrent constraint programming. In Arvind, V., & Prasad, S., (Eds.) FSTTCS, LNCS (vol. 4855, pp. 544–556). Springer.Google Scholar
  107. 107.
    Halbwachs, N. (1998). Synchronous programming of reactive systems. In Hu, A.J., & Vardi, M.Y. (Eds.) CAV, LNCS (vol. 1427, pp. 1–16). Springer.Google Scholar
  108. 108.
    Hankin, C. (Ed.) (1998). Programming Languages and Systems - ESOP’98, LNCS (vol. 1381). Springer.Google Scholar
  109. 109.
    Haridi, S., Janson, S., Montelius, J., Franzén, T., Brand, P., Boortz, K., Danielsson, B., Carlson, B., Keisu, T., Sahlin, D., Sjöland, T. (1993). Concurrent constraint programming at sics with the andorra kernel language (extended abstract). In PPCP (pp. 107–116).Google Scholar
  110. 110.
    Henkin, L., J.D., M., Tarski, A. (1971). Cylindric Algebras, Part I. North-Holland.Google Scholar
  111. 111.
    Hentenryck, P.V., Saraswat, V.A., Deville, Y. (1998). Design, implementation, and evaluation of the constraint language cc(FD). Journal of Logic Programming, 37(1–3), 139–164.Google Scholar
  112. 112.
    Hermith, D., Olarte, C., Rueda, C., Valencia, F.D. (2011). Modeling cellular signaling systems: An abstraction-refinement approach. In Rocha, M.P., Rodríguez, J.M.C., Fdez-Riverola, F., Valencia, A. (Eds.) PACBB, Advances in Intelligent and Soft Computing (vol. 93, pp. 321–328). Springer.Google Scholar
  113. 113.
    Hildebrandt, T., & López, H.A. (2009). Types for secure pattern matching with local knowledge in universal concurrent constraint programming. In Hill, P.M., & Warren, D.S. (Eds.) Logic Programming, 25th International Conference, ICLP 2009, Pasadena, CA, USA, July 14–17, 2009. Proceedings, LNCS (vol. 5649, pp. 417–431). Springer.Google Scholar
  114. 114.
    Hill, P.M., & Warren, D.S. (Eds.) (2009). Logic Programming, 25th International Conference, ICLP 2009, Pasadena, CA, USA, July 14–17, 2009. Proceedings, LNCS (vol. 5649). Springer.Google Scholar
  115. 115.
    Honda, K., Vasconcelos, V.T., Kubo, M. (1998). Language primitives and type discipline for structured communication-based programming. In Hankin, C. (Ed.) Programming Languages and Systems - ESOP’98, LNCS (vol. 1381, pp. 122–138). Springer.Google Scholar
  116. 116.
    Jaffar, J., & Lassez, J.L. (1987). Constraint logic programming. In POPL (pp. 111–119). ACM Press.Google Scholar
  117. 117.
    Jaffar, J., & Maher, M.J. (1994). Constraint logic programming: A survey. Journal of Logic Programming, 19 & 20, 503–581.Google Scholar
  118. 118.
    Jagadeesan, R., Marrero, W., Pitcher, C., Saraswat, V.A. (2005). Timed constraint programming: a declarative approach to usage control. In Barahona, P., & Felty, A.P. (Eds.) Proceedings of the 7th International ACM SIGPLAN Conference on Principles and Practice of Declarative Programming, July 11–13 2005, Lisbon, Portugal (pp. 164–175). ACM.Google Scholar
  119. 119.
    Jagadeesan, R., Saraswat, V., Shanbhogue, V. (1991). Angelic non-determinism in concurrent constraint programming. Technical Report, Xerox Parc.Google Scholar
  120. 120.
    Jouannaud, J.P. (Ed.) (1994). Constraints in Computational Logics, First International Conference, CCL’94, Munich, Germant, September 7–9, 1994, LNCS (vol. 845). Springer.Google Scholar
  121. 121.
    Kahn, K.M., & Saraswat, V.A. (1990). Actors as a special case of concurrent constraint programming. In Yonezawa, A. (Ed.) OOPSLA/ECOOP (pp. 57–66). ACM.Google Scholar
  122. 122.
    Kahn, K.M., & Saraswat, V.A. (1990). Complete visualization of concurrent programs and their executions. In LPE (pp. 30–34).Google Scholar
  123. 123.
    de Kergommeaux, J.C., & Codognet, P. (1994). Parallel logic programming systems. ACM Computing Surveys, 26(3), 295–336.CrossRefGoogle Scholar
  124. 124.
    Knight, S., Palamidessi, C., Panangaden, P., Valencia, F.D. (2012). Spatial and epistemic modalities in constraint-based process calculi. In Koutny, M., & Ulidowski, I. (Eds.) CONCUR, LNCS (vol. 7454, pp. 317–332). Springer.Google Scholar
  125. 125.
    Koninck, L.D., Schrijvers, T., Demoen, B. (2007). User-definable rule priorities for chr. In Leuschel, M., & Podelski, A. (Eds.) PPDP (pp. 25–36). ACM.Google Scholar
  126. 126.
    Kwiatkowska, M.Z. (1992). Infinite behaviour and fairness in concurrent constraint programming. In de Bakker, J.W., de Roever, W.P., Rozenberg, G. (Eds.) REX Workshop, LNCS (vol. 666, pp. 348–383). Springer.Google Scholar
  127. 127.
    Laneve, C., & Montanari, U. (1992). Mobility in the cc-paradigm. In Havel, I.M., & Koubek, V. (Eds.) MFCS, LNCS (vol. 629, pp. 336–345). Springer.Google Scholar
  128. 128.
    Lehmann, D.J. (1976). Categories for fixpoint-semantics. In FOCS (pp. 122–126). IEEE Computer Society.Google Scholar
  129. 129.
    Lescaylle, A., & Villanueva, A. (2007). Using tccp for the Specification and Verification of Communication Protocols. In Proc. of WFLP 07.Google Scholar
  130. 130.
    Lescaylle, A., & Villanueva, A. (2009). The tccp interpreter. ENTCS, 258(1), 63–77.Google Scholar
  131. 131.
    Lescaylle, A., & Villanueva, A. (2009). A tool for generating a symbolic representation of tccp executions. ENTCS, 246, 131–145.Google Scholar
  132. 132.
    Lescaylle, A., & Villanueva, A. (2010). Bridging the gap between two concurrent constraint languages. In Mari no, J. (Ed.) WFLP, LNCS (vol. 6559, pp. 155–173). Springer.Google Scholar
  133. 133.
    López, H.A., Olarte, C., Pérez, J.A. (2009). Towards a unified framework for declarative structured communications. In Beresford, A.R., & Gay, S.J. (Eds.) PLACES, EPTCS (vol. 17, pp. 1–15).Google Scholar
  134. 134.
    Maher, M.J. (1987). Logic semantics for a class of committed-choice programs. In ICLP (pp. 858–876).Google Scholar
  135. 135.
    Manna, Z., & Pnueli, A. (1991). The Temporal Logic of Reactive and Concurrent Systems: Specification. Springer-Verlag.Google Scholar
  136. 136.
    Marriott, K., & Odersky, M. (1997). A confluent calculus for concurrent constraint programming. Theoretical Computer Science, 173(1), 209–233.MathSciNetzbMATHCrossRefGoogle Scholar
  137. 137.
    Martinez, T. (2010). Semantics-preserving translations between linear concurrent constraint programming and constraint handling rules. In Kutsia, T., Schreiner, W., Fernández, M. (Eds.) PPDP (pp. 57–66). ACM.Google Scholar
  138. 138.
    Mendler, N.P., Panangaden, P., Scott, P.J., Seely, R.A.G. (1995). A logical view of concurrent constraint programming. Nordic Journal of Computing, 2(2), 181–220.MathSciNetzbMATHGoogle Scholar
  139. 139.
    Milner, R. (1992). A finite delay operator in synchronous CCS. Technical Report CSR-116-82, University of Edinburgh.Google Scholar
  140. 140.
    Milner, R., Parrow, J., Walker, D. (1992). A calculus of mobile processes, Parts I and II. Information and Computation, 100(1), 1–40.MathSciNetzbMATHCrossRefGoogle Scholar
  141. 141.
    Monfroy, E., Olarte, C., Rueda, C. (2007). Process calculi for adaptive enumeration strategies in constraint programming. Research in Computer Science.Google Scholar
  142. 142.
    Montanari, U. (1974). Networks of constraints: Fundamental properties and applications to picture processing. Information Science, 7, 95–132.MathSciNetzbMATHCrossRefGoogle Scholar
  143. 143.
    Montanari, U., & Rossi, F. (1991). True concurrency in concurrent constraint programming. In ISLP (pp. 694–713).Google Scholar
  144. 144.
    Montanari, U., & Rossi, F. (1993). Contextual occurence nets and concurrent constraint programming. In Schneider, H.J., & Ehrig, H. (Eds.) Dagstuhl Seminar on Graph Transformations in Computer Science, LNCS (vol. 776, pp. 280–295). Springer.Google Scholar
  145. 145.
    Montanari, U., & Rossi, F. (1995). A concurrenct semantics for concurrent constraint programming via contextual nets. In Saraswat, V., & Hentenryck, P.V. (Eds.) Principles and Practice of Constraint Programming (pp. 3–27). MIT Press.Google Scholar
  146. 146.
    Montanari, U., & Rossi, F. (1995). Contextual nets. Acta Informatica, 32(6), 545–596.MathSciNetzbMATHGoogle Scholar
  147. 147.
    Montanari, U., Rossi, F., Bueno, F., de la Banda, M.J.G., Hermenegildo, M.V. (1994). Towards a concurrent semantics based analysis of cc and clp. In Borning, A. (Ed.) Principles and Practice of Constraint Programming, Second International Workshop, PPCP’94, Rosario, Orcas Island, Washington, USA, May 2–4, 1994, Proceedings, LNCS (vol. 874, pp. 151–161). Springer.Google Scholar
  148. 148.
    Montanari, U., Rossi, F., Saraswat, V.A. (1994). Cc programs with both in- and non-determinism: A concurrent semantics. In Borning, A. (Ed.) Principles and Practice of Constraint Programming, Second International Workshop, PPCP’94, Rosario, Orcas Island, Washington, USA, May 2–4, 1994, Proceedings, LNCS (vol. 874, pp. 162–172). Springer.Google Scholar
  149. 149.
    Müller, T., & Müller, M. (1997). Finite set intervals in Oz. In WLP (pp. 17–19).Google Scholar
  150. 150.
    Needham, R.M., & Schroeder, M.D. (1978). Using encryption for authentication in large networks of computers. Communications of the ACM, 21(12), 993–999.zbMATHCrossRefGoogle Scholar
  151. 151.
    Niehren, J., & Smolka, G. (1994). A confluent relational calculus for higher-order programming with constraints. In Jouannaud, J.P. (Ed.) Constraints in Computational Logics, First International Conference, CCL’94, Munich, Germant, September 7–9, 1994, LNCS (vol. 845, pp. 89–104). Springer.Google Scholar
  152. 152.
    Nielsen, M., Palamidessi, C., Valencia, F.D. (2002). On the expressive power of temporal concurrent constraint programming languages. In PPDP (pp. 156–167). ACM.Google Scholar
  153. 153.
    Nielsen, M., Palamidessi, C., Valencia, F.D. (2002). Temporal concurrent constraint programming: Denotation, logic and applications. Nordic Journal of Computing, 9(1), 145–188.MathSciNetzbMATHGoogle Scholar
  154. 154.
    Nyström, S.O., & Jonsson, B. (1993). Indeterminate concurrent constraint programming: A fixpoint semantics for non-terminating computations. In ILPS (pp. 335–352).Google Scholar
  155. 155.
    Olarte, C., Pimentel, E., Rueda, C., Cata no, N. (2012). A linear concurrent constraint approach for the automatic verification of access permissions. In Schreye, D.D., Janssens, G., King, A. (Eds.) PPDP (pp. 207–216). ACM.Google Scholar
  156. 156.
    Olarte, C., & Rueda, C. (2009). A declarative language for dynamic multimedia interaction systems. In Chew, E., Childs, A., Chuan, C.H. (Eds.) Mathematics and Computation in Music, Communications in Computer and Information Science (vol. 38, pp. 218–227). Springer Berlin Heidelberg.Google Scholar
  157. 157.
    Olarte, C., & Valencia, F.D. (2008). The expressivity of universal timed ccp: undecidability of monadic fltl and closure operators for security. In Antoy, S., & Albert, E. (Eds.) PPDP (pp. 8–19). ACM.Google Scholar
  158. 158.
    Olarte, C., & Valencia, F.D. (2008). Universal concurrent constraint programing: symbolic semantics and applications to security. In Wainwright, R.L., & Haddad, H. (Eds.) SAC (pp. 145–150). ACM.Google Scholar
  159. 159.
    Ossowski, S., & Lecca, P. (Eds.) (2012). Proceedings of the ACM Symposium on Applied Computing, SAC 2012, Riva, Trento, Italy, March 26–30, 2012. ACM.Google Scholar
  160. 160.
    Palù, A.D., Dovier, A., Fogolari, F. (2004). Protein folding simulation in ccp. In Demoen, B., & Lifschitz, V. (Eds.) Logic Programming, 20th International Conference, ICLP 2004, Saint-Malo, France, September 6–10, 2004, Proceedings, LNCS (vol. 3132, pp. 452–453). Springer.Google Scholar
  161. 161.
    Pérez, J.A., & Rueda, C. (2008). Non-determinism and probabilities in timed concurrent constraint programming. In de la Banda, M.G., & Pontelli, E. (Eds.) Logic Programming, 24th Int. Conference, ICLP 2008, Udine, Italy, December 9–13 2008, Proceedings, LNCS (vol. 5366, pp. 677–681). Springer.Google Scholar
  162. 162.
    Petri, C.A. (1962). Fundamentals of a theory of asynchronous information flow. In IFIP Congress (pp. 386–390).Google Scholar
  163. 163.
    Pettorossi, A., & Proietti, M. (1994). Transformation of logic programs: Foundations and techniques. Journal of Logic Programming, 19/20, 261–320.Google Scholar
  164. 164.
    Pierro, A.D., & Wiklicky, H. (1998). A banach space based semantics for probabilistic concurrent constraint programming. In Lin, X. (Ed.) CATS, Australian Computer Science Communications (vol. 20, pp. 245–260). Springer-Verlag Singapore Pte. Ltd.Google Scholar
  165. 165.
    Pierro, A.D., & Wiklicky, H. (1998). Probabilistic concurrent constraint programming: Towards a fully abstract model. In Brim, L., Gruska, J., Zlatuska, J. (Eds.) MFCS, LNCS (vol. 1450, pp. 446–455). Springer.Google Scholar
  166. 166.
    Pierro, A.D., & Wiklicky, H. (2000). Concurrent constraint programming: towards probabilistic abstract interpretation. In PPDP (pp. 127–138). ACM.Google Scholar
  167. 167.
    del Pilar Mu noz, M., & Hurtado, A.R. (2004). Programming robotic devices with a timed concurrent constraint language. In Wallace, M. (Ed.) CP, LNCS (vol. 3258, p. 803). Springer.Google Scholar
  168. 168.
    Pilozzi, P., & Schreye, D.D. (2011). Improved termination analysis of chr using self-sustainability analysis. In Vidal, G. (Ed.) LOPSTR, LNCS (vol. 7225, pp. 189–204). Springer.Google Scholar
  169. 169.
    Puckette, M., Apel, T., Zicarelli, D. (1998). Real-time audio analysis tools for Pd and MSP. In Proceedings, International Computer Music Conference (pp. 109–112).Google Scholar
  170. 170.
    Reisig, W. (1985). Petri Nets: An Introduction, Monographs in Theoretical Computer Science. An EATCS Series, (vol. 4). Springer.Google Scholar
  171. 171.
    Reiter, R. (1980). A logic for default reasoning. Artificial Intelligence, 13(1–2), 81–132.Google Scholar
  172. 172.
    Réty, J.H. (1998). Distributed concurrent constraint programming. Fundamenta Informaticae, 34(3), 323–346.MathSciNetzbMATHGoogle Scholar
  173. 173.
    Roy, P.V., & Haridi, S. (2004). Concepts, Techniques, and Models of Computer Programming. MIT Press.Google Scholar
  174. 174.
    Rueda, C., Alvarez, G., Quesada, L., Tamura, G., Valencia, F.D., Díaz, J.F., Assayag, G. (2001). Integrating constraints and concurrent objects in musical applications: A calculus and its visual language. Constraints, 6(1), 21–52.MathSciNetzbMATHCrossRefGoogle Scholar
  175. 175.
    Rueda, C., & Valencia, F. (2004). On validity in modelization of musical problems by CCP. Soft Computing, 8(9), 641–648.zbMATHCrossRefGoogle Scholar
  176. 176.
    Rueda, C., & Valencia, F.D. (2005). A temporal concurrent constraint calculus as an audio processing framework. In Sound and Music Computing conference.Google Scholar
  177. 177.
    Sangiorgi, D. (2012). Introduction to Bisimulation and Coinduction. Cambridge Universtity Press.Google Scholar
  178. 178.
    Saraswat, V. (2004). Euler: an applied lcc language for graph rewriting. Technical Report, IBM TJ Watson Research Center.Google Scholar
  179. 179.
    Saraswat, V., & Lincoln, P. (1992). Higher-order Linear Concurrent Constraint Programming. Technical Report, Xerox Parc.Google Scholar
  180. 180.
    Saraswat, V.A. (1992). The category of constraint systems is cartesian-closed. In LICS (pp. 341–345). IEEE Computer Society.Google Scholar
  181. 181.
    Saraswat, V.A. (1993). Concurrent Constraint Programming. MIT Press.Google Scholar
  182. 182.
    Saraswat, V.A., Jagadeesan, R., Gupta, V. (1994). Foundations of timed concurrent constraint programming. In LICS (pp. 71–80). IEEE Computer Society.Google Scholar
  183. 183.
    Saraswat, V.A., Jagadeesan, R., Gupta, V. (1996). Timed default concurrent constraint programming. Journal of Symbolic Computation, 22(5 & 6), 475–520.Google Scholar
  184. 184.
    Saraswat, V.A., Jagadeesan, R., Gupta, V. (2003). jcc: Integrating timed default concurrent constraint programming into java. In Moura-Pires, F., & Abreu, S. (Eds.) EPIA, LNCS (vol. 2902, pp. 156–170). Springer.Google Scholar
  185. 185.
    Saraswat, V.A., Kahn, K.M., Levy, J. (1990). Janus: A step towards distributed constraint programming. In NACLP (pp. 431–446).Google Scholar
  186. 186.
    Saraswat, V.A., & Rinard, M.C. (1990). Concurrent constraint programming. In Allen, F.E. (Ed.) POPL (pp. 232–245). ACM Press.Google Scholar
  187. 187.
    Saraswat, V.A., Rinard, M.C., Panangaden, P. (1991). Semantic foundations of concurrent constraint programming. In Wise, D.S. (Ed.) POPL (pp. 333–352). ACM Press.Google Scholar
  188. 188.
    Sarna-Starosta, B., & Ramakrishnan, C.R. (2007). Compiling constraint handling rules for efficient tabled evaluation. In Hanus, M. (Ed.) PADL, LNCS (vol. 4354, pp. 170–184). Springer.Google Scholar
  189. 189.
    Sarria, G. (2011). Real-time concurrent constraint calculus: The complete operational semantics. Engineering Letters, 19(1), 38–45.Google Scholar
  190. 190.
    Sato, T. (2008). A glimpse of symbolic-statistical modeling by prism. Journal of Intelligent Information Systems, 31(2), 161–176.CrossRefGoogle Scholar
  191. 191.
    Schächter, V. (1998). Linear concurrent constraint programming over reals. In Maher, M.J., & Puget, J.F. (Eds.) CP, LNCS (vol. 1520, pp. 400–416). Springer.Google Scholar
  192. 192.
    Schrijvers, T., Stuckey, P.J., Duck, G.J. (2005). Abstract interpretation for constraint handling rules. In Barahona, P., & Felty, A.P. (Eds.) Proceedings of the 7th International ACM SIGPLAN Conference on Principles and Practice of Declarative Programming, July 11–13 2005, Lisbon, Portugal (pp. 218–229). ACM.Google Scholar
  193. 193.
    Scott, D.S. (1982). Domains for denotational semantics. In Nielsen, M., & Schmidt, E.M. (Eds.) ICALP, LNCS, (vol. 140, pp. 577–613). Springer.Google Scholar
  194. 194.
    Shapiro, E. (1989). The family of concurrent logic programming languages. ACM Computing Surveys, 21(3), 413–510.CrossRefGoogle Scholar
  195. 195.
    Smolka, G. (1994). A foundation for higher-order concurrent constraint programming. In Jouannaud, J.P. (Ed.) Constraints in Computational Logics, First International Conference, CCL’94, Munich, Germant, September 7–9, 1994, LNCS (vol. 845, pp. 50–72). Springer.Google Scholar
  196. 196.
    Smolka, G. (1995). The Oz programming model. In van Leeuwen, J. (Ed.) Computer Science Today, LNCS, (vol. 1000, pp. 324–343). Springer.Google Scholar
  197. 197.
    Smolka, G. (1998). Concurrent constraint programming based on functional programming (extended abstract). In Hankin, C. (Ed.) Programming Languages and Systems - ESOP’98, LNCS (vol. 1381, pp. 1–11). Springer.Google Scholar
  198. 198.
    Sneyers, J., Meert, W., Vennekens, J., Kameya, Y., Sato, T. (2010). Chr(prism)-based probabilistic logic learning. TPLP, 10(4–6), 433–447.Google Scholar
  199. 199.
    Sneyers, J., Weert, P.V., Schrijvers, T., Koninck, L.D. (2010). As time goes by: Constraint handling rules. TPLP, 10(1), 1–47.Google Scholar
  200. 200.
    Stallman, R.M., & Sussman, G.J. (1977). Forward reasoning and dependency-directed backtracking in a system for computer-aided circuit analysis. Artificial Intelligence, 9(2), 135–196.Google Scholar
  201. 201.
    Stork, S., Marques, P., Aldrich, J. (2009). Concurrency by default: using permissions to express dataflow in stateful programs. In Arora, S., & Leavens, G.T. (Eds.) OOPSLA Companion (pp. 933–940). ACM.Google Scholar
  202. 202.
    Sussman, G.J., Jr., G.L.S. (1980). Constraints - a language for expressing almost-hierarchical descriptions. Artificial Intelligence, 14(1), 1–39.Google Scholar
  203. 203.
    Takeuchi, K., Honda, K., Kubo, M. (1994). An interaction-based language and its typing system. In Halatsis, C., Maritsas, D.G., Philokyprou, G., Theodoridis, S. (Eds.) PARLE, LNCS, (vol. 817, pp. 398–413). Springer.Google Scholar
  204. 204.
    Toro-Bermúdez, M., & Desainte-Catherine, M. (2010). Concurrent constraints conditional-branching timed interactive scores. In Sound and Music Computing Conference. Barcelona, Spain.Google Scholar
  205. 205.
    Ueda, K., Kato, N., Hara, K., Mizuno, K. (2006). Lmntal as a unifying declarative language: Live demonstration. In Etalle, S., & Truszczynski, M. (Eds.) ICLP, LNCS (vol. 4079, pp. 457–458). Springer.Google Scholar
  206. 206.
    Valencia, F.D. (2005). Decidability of infinite-state timed ccp processes and first-order ltl. Theoretical Computer Science, 330(3), 577–607.MathSciNetzbMATHCrossRefGoogle Scholar
  207. 207.
    Varejao, F.M., Fromherz, M.P., Garcia, A.C.B., de Souza, C.S. (1998). An integrated framework for the specification and design of reprographic machines. In Thirteenth Int. Conf. on Applications of Artificial Intelligence in Engineering. Computational Mechanics Publications.Google Scholar
  208. 208.
    Victor, B., & Parrow, J. (1998). Concurrent constraints in the fusion calculus. In Larsen, K.G., Skyum, S., Winskel, G. (Eds.) ICALP, LNCS (vol. 1443, pp. 455–469). Springer.Google Scholar
  209. 209.
    Wahls, T., Leavens, G.T., Baker, A.L. (2000). Executing formal specifications with concurrent constraint programming. Automated Software Engineering, 7(4), 315–343.zbMATHCrossRefGoogle Scholar
  210. 210.
    Waltz, D.L. (2006). Gene freuder and the roots of constraint computation. Constraints, 11(2–3), 87–89.Google Scholar
  211. 211.
    Wischik, L., & Gardner, P. (2005). Explicit fusions. Theoretical Computer Science, 340(3), 606–630.MathSciNetzbMATHCrossRefGoogle Scholar
  212. 212.
    Wong, H.C., Fromherz, M., Gupta, V., Saraswat, V. (1995). Control-based programming of electro-mechanical controllers. In IJCAI Workshop on Executable Temporal Logics.Google Scholar
  213. 213.
    Zaffanella, E., Giacobazzi, R., Levi, G. (1997). Abstracting synchronization in concurrent constraint programming. Journal of Functional and Logic Programming, 1997(6).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Carlos Olarte
    • 1
  • Camilo Rueda
    • 1
  • Frank D. Valencia
    • 2
  1. 1.Departamento de Electrónica y Ciencias de la ComputaciónPontificia Universidad Javeriana CaliCaliColombia
  2. 2.CNRS, LIXÉcole PolytechniquePalaiseauFrance

Personalised recommendations