, Volume 18, Issue 1, pp 1–6 | Cite as

On the reification of global constraints

  • Nicolas Beldiceanu
  • Mats Carlsson
  • Pierre Flener
  • Justin Pearson


We introduce a simple idea for deriving reified global constraints in a systematic way. It is based on the observation that most global constraints can be reformulated as a conjunction of total function constraints together with a constraint that can be easily reified.


Global constraint Reification Reformulation Functional dependency 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alvarez Divo, C.E. (2011). Automated reasoning on feature models via constraint programming. Master’s thesis, Uppsala University, Sweden. Tech. Rep. IT 11 041.Google Scholar
  2. 2.
    Beldiceanu, N., Carlsson, M., Flener, P., Pearson, J. (2012). On the reification of global constraints. Tech. Rep. T2012:02, Swedish Institute of Computer Science. Available at
  3. 3.
    Beldiceanu, N., Carlsson, M., Petit, T. (2004). Deriving filtering algorithms from constraint checkers. In CP 2004. LNCS (Vol. 3258, pp. 107–122). Springer.Google Scholar
  4. 4.
    Beldiceanu, N., Carlsson, M., Rampon, J.X. (2012). Global constraint catalog, 2nd edn. (revision a). Tech. Rep. T2012:03, Swedish Institute of Computer Science.Google Scholar
  5. 5.
    Beldiceanu, N., & Simonis, H. (2011). A constraint seeker: Finding and ranking global constraints from examples. In J.H.M. Lee (Ed.), CP 2011. LNCS (Vol. 6876). Springer.Google Scholar
  6. 6.
    Bessière, C., Katsirelos, G., Narodytska, N., Quimper, C.G., Walsh, T. (2009). Decompositions of all different, global cardinality and related constraints. In IJCAI (pp. 419–424).Google Scholar
  7. 7.
    Feydy, T., Somogyi, Z., Stuckey, P.J. (2011). Half reification and flattening. In J.H.M. Lee (Ed.), CP 2011. LNCS (Vol. 6876, pp. 286–301). Springer.Google Scholar
  8. 8.
    Gent, I.P., Jefferson, C., Miguel, I. (2006). Minion: a fast scalable constraint solver. In ECAI 2006 (pp. 98–102). IOS Press.Google Scholar
  9. 9.
    Jefferson, C., Moore, N.C.A., Nightingale, P., Petrie, K.E. (2010). Implementing logical connectives in constraint programming. Artificial Intelligence, 174, 1407–1429.MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Lazaar, N. (2011). Méthodologie et outil de test, de localisation de fautes et de correction automatique des programmes à contraintes. Ph.D. thesis, Rennes 1 Univ., France.Google Scholar
  11. 11.
    Marriott, K., Nethercote, N., Rafeh, R., Stuckey, P.J., de la Banda, M.G., Wallace, M. (2008). The design of the Zinc modelling language. Constraints, 13(3), 229–267.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Pesant, G. (2004). A regular language membership constraint for finite sequences of variables. In M.G. Wallace (Ed.), CP 2004. LNCS 2004 (Vol. 3258, pp. 482–495). Springer.Google Scholar
  13. 13.
    Schulte, C., Tack, G., Lagerkvist, M.Z. (2011). Modeling and programming with gecode (version 3.7.1). Available from
  14. 14.
    Van Hentenryck, P., & Deville, Y. (1991). The cardinality operator: a new logical connective in constraint logic programming. In ICLP 1991. MIT PressGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Nicolas Beldiceanu
    • 1
  • Mats Carlsson
    • 2
  • Pierre Flener
    • 3
  • Justin Pearson
    • 3
  1. 1.TASC team (CNRS/INRIA)NantesFrance
  2. 2.SICSKistaSweden
  3. 3.Uppsala UniversityUppsalaSweden

Personalised recommendations