Constraints

, Volume 17, Issue 3, pp 205–233

Improved filtering for weighted circuit constraints

  • Pascal Benchimol
  • Willem-Jan van Hoeve
  • Jean-Charles Régin
  • Louis-Martin Rousseau
  • Michel Rueher
Article

Abstract

We study the weighted circuit constraint in the context of constraint programming. It appears as a substructure in many practical applications, particularly routing problems. We propose a domain filtering algorithm for the weighted circuit constraint that is based on the 1-tree relaxation of Held and Karp. In addition, we study domain filtering based on an additive bounding procedure that combines the 1-tree relaxation with the assignment problem relaxation. Experimental results on Traveling Salesman Problem instances demonstrate that our filtering algorithms can dramatically reduce the problem size. In particular, the search tree size and solving time can be reduced by several orders of magnitude, compared to existing constraint programming approaches. Moreover, for medium-size problem instances, our method is competitive with the state-of-the-art special-purpose TSP solver Concorde.

Keywords

Global constraint Circuit Optimization constraint Relaxation Constraint propagation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Althaus, E., Bockmayr, A., Elf, M., Jünger, M., Kasper, T., & Mehlhorn, K. (2002). SCIL—Symbolic constraints in integer linear programming. In Proceedings of the 10th annual European symposium on algorithms (ESA). Lecture notes in computer science (Vol. 2461, pp. 75–87). Berlin: Springer.Google Scholar
  2. 2.
    Applegate, D. L., Bixby, R. E., Chvátal, V., & Cook, W. J. (2006). The traveling salesman problem: A computational study. Princeton: Princeton University Press.MATHGoogle Scholar
  3. 3.
    Azevedo, F. (2007). Cardinal: A finite sets constraint solver. Constraints, 12, 93–129.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Beldiceanu, N., & Contejean, E. (1994). Introducing global constraints in CHIP. Mathematical and Computer Modelling, 20(12), 97–123.MATHCrossRefGoogle Scholar
  5. 5.
    Beldiceanu, N., Flener, P., & Lorca, X. (2005). The tree constraint. In Proceedings of the fourth international conference on integration of AI and OR techniques in constraint programming for combinatorial optimization problems (CPAIOR). Lecture notes in computer science (Vol. 3524, pp. 64–78). Berlin: Springer.CrossRefGoogle Scholar
  6. 6.
    Bessiere, C. (2006). Constraint propagation. In F. Rossi, P. van Beek, & T. Walsh (Eds.), Handbook of constraint programming (Chapter 3). Amsterdam: Elsevier.Google Scholar
  7. 7.
    Carpaneto, G., Dell’Amico, M., & Toth, P. (1995). Exact solution of large-scale, asymmetric traveling salesman problems. ACM Transactions on Mathematical Software, 21(4), 394–409.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Carpaneto, G., Martello, S., & Toth, P. (1988). Algorithms and codes for the assignment problem. Annals of Operations Research, 13(1), 191–223.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Caseau, Y., & Laburthe, F. (1997). Solving small TSPs with constraints. In Proceedings of the 14th international conference on logic programming (ICLP) (pp. 316–330). Cambridge: MIT Press.Google Scholar
  10. 10.
    Chazelle, B. (2000). A minimum spanning tree algorithm with inverse-Ackermann type complexity. Journal of the ACM, 47(6), 1028–1047.MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Cormen, T. H., Leiserson, C. E., & Rivest, R. L. (1990). Introduction to algorithms. Cambridge: MIT Press.MATHGoogle Scholar
  12. 12.
    Dixon, B., Rauch, M., & Tarjan, R. (1992). Verification and sensitivity analysis of minimum spanning trees in linear time. SIAM Journal on Computing, 21(6), 1184–1192.MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Dooms, G., & Katriel, I. (2006). The minimum spanning tree constraint. In Proceedings of CP. LNCS (Vol. 4204, pp. 152–166). Berlin: Springer.Google Scholar
  14. 14.
    Dooms, G., & Katriel, I. (2007). The “not-too-heavy spanning tree” constraint. In Proceedings of the fourth international conference on integration of AI and OR techniques in constraint programming for combinatorial optimization problems (CPAIOR). Lecture notes in computer science (Vol. 4510, pp. 59–70). Berlin: Springer.CrossRefGoogle Scholar
  15. 15.
    Fages, J.-G., & Lorca, X. (2011). Revisiting the tree constraint. In Proceedings of the 17th international conference on the principles and practice of constraint programming (CP). LNCS (Vol. 6876, pp. 271–285). Berlin: Springer.Google Scholar
  16. 16.
    Fischetti, M., & Toth, P. (1989). An additive bounding procedure for combinatorial optimization problems. Operations Research, 37(2), 319–328.MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Fischetti, M., & Toth, P. (1992). An additive bounding procedure for the asymmetric travelling salesman problem. Mathematical Programming, 53(1), 173–197.MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Focacci, F. (2001). Solving combinatorial optimization problems in constraint programming. Ph.D. thesis, University of Ferrara.Google Scholar
  19. 19.
    Focacci, F., Lodi, A., & Milano, M. (1999). Cost-based domain filtering. In Proceedings of the fifth international conference on principles and practice of constraint programming (CP). Lecture notes in computer science (Vol. 1713, pp. 189–203).Google Scholar
  20. 20.
    Focacci, F., Lodi, A., & Milano, M. (2002). Embedding relaxations in global constraints for solving TSP and TSPTW. Annals of Mathematics and Artificial Intelligence, 34(4), 291–311.MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Focacci, F., Lodi, A., & Milano, M. (2002). A hybrid exact algorithm for the TSPTW. INFORMS Journal on Computing, 14(4), 403–417.MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Focacci, F., Lodi, A., Milano, M., & Vigo, D. (1999). Solving TSP through the integration of OR and CP techniques. Electronic Notes in Discrete Mathematics, 1, 13–25.MathSciNetCrossRefGoogle Scholar
  23. 23.
    Genç Kaya, L., & Hooker, J. N. (2006). A filter for the circuit constraint. In Proceedings of the 12th international conference on principles and practice of constraint programming (CP). Lecture notes in computer science (Vol. 4204, pp. 706–710). Berlin: Springer.Google Scholar
  24. 24.
    Gervet, C. (1993). New structures of symbolic constraint objects: Sets and graphs. In Third workshop on constraint logic programming (WCLP’2003).Google Scholar
  25. 25.
    Gervet, C. (2006). Constraints over structured domains. In F. Rossi, P. van Beek, & T. Walsh (Eds.), Handbook of constraint programming (Chapter 17). Amsterdam: Elsevier.Google Scholar
  26. 26.
    Grötschel, M., & Holland, O. (1991). Solution of large-scale symmetric travelling salesman problems. Mathematical Programming, 51, 141–202.MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Gutin, G., & Punnen, A. P. (Eds.) (2007). The traveling salesman problem and its variations. Berlin: Springer.MATHGoogle Scholar
  28. 28.
    Held, M., & Karp, R. M. (1970). The traveling-salesman problem and minimum spanning trees. Operations Research, 18, 1138–1162.MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Held, M., & Karp, R. M. (1971). The traveling-salesman problem and minimum spanning trees: Part II. Mathematical Programming, 1, 6–25.MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Helsgaun, K. (2000). An effective implementation of the Lin-Kernighan traveling salesman heuristic. European Journal of Operational Research, 126(1), 106–130.MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Helsgaun, K. (2009). General k-opt submoves for the Lin-Kernighan TSP heuristic. Mathematical Programming Computation, 1(2), 119–163.MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    IBM Corp. (2010). IBM ILOG CP V1.6 User Manual.Google Scholar
  33. 33.
    IBM Corp. (2010). IBM ILOG OPL V12.2 User Manual.Google Scholar
  34. 34.
    Jonker, R., & Volgenant, T. (1983). Transforming asymmetric into symmetric traveling salesman problems. Operations Research Letters, 2(4), 161–163.MATHCrossRefGoogle Scholar
  35. 35.
    Karp, R. M. (1972). Reducibility among combinatorial problems. In R. E. Miller, & J. W. Thatcher (Eds.), Complexity of computer animations (pp. 85–103). London: Plenum Press.Google Scholar
  36. 36.
    Kilby, P., & Shaw, P. (2006). Vehicle routing. In F. Rossi, P. van Beek, & T. Walsh (Eds.), Handbook of constraint programming (Chapter 23). Amsterdam: Elsevier.Google Scholar
  37. 37.
    Kuhn, H. W. (1955). The Hungarian Method for the assignment problem. Naval Research Logistics Quarterly, 2, 83–97.MathSciNetCrossRefGoogle Scholar
  38. 38.
    Lauriere, J.-L. (1978). A language and a program for stating and solving combinatorial problems. Artificial Intelligence, 10(1), 29–127.MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Lodi, A., Milano, M., & Rousseau, L.-M. (2006). Discrepancy-based additive bounding procedures. INFORMS Journal on Computing, 18(4), 480–493.MathSciNetCrossRefGoogle Scholar
  40. 40.
    Milano, M., & van Hoeve, W. J. (2002). Reduced cost-based ranking for generating promising subproblems. In Proceedings of the eighth international conference on principles and practice of constraint programming (CP). Lecture notes in computer science (Vol. 2470, pp. 1–16). Berlin: Springer.Google Scholar
  41. 41.
    Pesant, G., Gendreau, M., Potvin, J. Y., & Rousseau, J. M. (1998). An exact constraint logic programming algorithm for the traveling salesman problem with time windows. Transportation Science, 32(1), 12–29.MATHCrossRefGoogle Scholar
  42. 42.
    Prim, R. C. (1957). Shortest connection networks and some generalizations. Bell System Techical Journal, 36, 1389–1401.Google Scholar
  43. 43.
    Puget, J. F. (1992). PECOS: A high level constraint programming language. In Proceedings of the Singapore international conference on intelligent systems (SPICIS).Google Scholar
  44. 44.
    Régin, J.-C. (1994). A filtering algorithm for constraints of difference in CSPs. In Proceedings of the twelfth national conference on artificial intelligence (AAAI) (Vol. 1, pp. 362–367). Menlo Park: AAAI Press.Google Scholar
  45. 45.
    Régin, J.-C. (2008). Simpler and incremental consistency checking and arc consistency filtering algorithms for the weighted spanning tree constraint. In Proceedings of the fifth international conference on integration of AI and OR techniques in constraint programming for combinatorial optimization problems (CPAIOR). Lecture notes in computer science (Vol. 5015, pp. 233–247). Berlin: Springer.CrossRefGoogle Scholar
  46. 46.
    Régin, J.-C. (2011). Global constraints: A survey. In P. Van Hentenryck, & M. Milano (Eds.), Hybrid optimization (pp. 63–134). Berlin: Springer.CrossRefGoogle Scholar
  47. 47.
    Régin, J.-C., Rousseau, L.-M., Rueher, M., & van Hoeve, W.-J. (2010). The weighted spanning tree constraint revisited. In Proceedings of the seventh international conference on integration of AI and OR techniques in constraint programming for combinatorial optimization problems (CPAIOR). LNCS (Vol. 6140, pp. 176–180. Berlin: Springer.Google Scholar
  48. 48.
    Sellmann, M. (2004). Theoretical foundations of CP-based Lagrangian relaxation. In Proceedings of the 10th international conference on the principles and practice of constraint programming (CP). LNCS (Vol. 3258, pp. 634–647). Berlin: Springer.Google Scholar
  49. 49.
    Tarjan, R. (1982). Sensitivity analysis of minimum spanning trees and shortest path trees. Information Processing Letters, 14(1), 30–33.MathSciNetCrossRefGoogle Scholar
  50. 50.
    Tarjan, R. E. (1979). Applications of path compression on balanced trees. Journal of the ACM, 26(4), 690–715.MathSciNetMATHCrossRefGoogle Scholar
  51. 51.
    van Hoeve, W.-J., & Katriel, I. (2006). Global constraints. In F. Rossi, P. van Beek, & T. Walsh (Eds.), Handbook of constraint programming (Chapter 6). Amsterdam: Elsevier.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Pascal Benchimol
    • 1
  • Willem-Jan van Hoeve
    • 2
  • Jean-Charles Régin
    • 3
  • Louis-Martin Rousseau
    • 4
  • Michel Rueher
    • 3
  1. 1.INRIA Saclay and CMAPÉcole PolytechniquePalaiseauFrance
  2. 2.Tepper School of BusinessCarnegie Mellon UniversityPittsburghUSA
  3. 3.I3S-CNRSUniversity of Nice-Sophia AntipolisNiceFrance
  4. 4.CIRRELTÉcole Polytechnique de MontréalMontréalCanada

Personalised recommendations