Advertisement

Constraints

, Volume 17, Issue 2, pp 148–171 | Cite as

Partial symmetry breaking by local search in the group

  • Steve D. PrestwichEmail author
  • Brahim Hnich
  • Helmut Simonis
  • Roberto Rossi
  • S. Armagan Tarim
Article

Abstract

The presence of symmetry in constraint satisfaction problems can cause a great deal of wasted search effort, and several methods for breaking symmetries have been reported. In this paper we describe a new method called Symmetry Breaking by Nonstationary Optimisation, which interleaves local search in the symmetry group with backtrack search on the constraint problem. It can be tuned to break each symmetry with an arbitrarily high probability with high runtime overhead, or as a lightweight but still powerful method with low runtime overhead. It has negligible memory requirement, it combines well with static lex-leader constraints, and its benefit increases with problem hardness.

Keywords

Symmetry breaking Local search Matrix symmetry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Apt, K. R., & Wallace, M. G. (2007). Constraint logic programming using eclipse. Cambridge University Press.Google Scholar
  2. 2.
    Backofen, R., & Will, S. (1999). Excluding symmetries in constraint-based search. In 5th international conference on principles and practice of constraint programming. Lecture notes in computer science (Vol. 1713, pp. 73–87). Springer.Google Scholar
  3. 3.
    Brown, C. A., Finkelstein, & Purdom, P. W. (1988) Backtrack searching in the presence of symmetry. In Applied algebra, algebraic algorithms and error-correcting codes. Lecture notes in computer science (Vol. 357, pp. 99–110). Springer.Google Scholar
  4. 4.
    Cohen, D., Jeavons, P., Jefferson, C., Petrie, K. E., & Smith, B. M. (2006). Symmetry definitions for constraint satisfaction problems. Constraints, 11, 115–137.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Crawford, J., Ginsberg, M. L., Luks, E., & Roy, A. (1996). Symmetry-breaking predicates for search problems. In Principles of knowledge representation and reasoning (pp. 148–159). Morgan Kaufmann.Google Scholar
  6. 6.
    Flener, P., Frisch, A. M., Hnich, B., Kiziltan, Z., Miguel, I., Pearson, J., et al. (2002). Breaking row and column symmetries in matrix models. In 8th international conference on principles and practice of constraint programming. Lecture notes in computer science (Vol. 2470, pp. 462–476). Springer.Google Scholar
  7. 7.
    Focacci, F., & Milano, M. (2001). Global cut framework for removing symmetries. In 7th international conference on principles and practice of constraint programming. Lecture notes in computer science (Vol. 2239, pp. 77–92). Springer.Google Scholar
  8. 8.
    Frisch, A. M., & Harvey, W. (2003). Constraints for breaking all row and column symmetries in a three-by-two matrix. In 3rd international workshop on symmetry in constraint satisfaction problems.Google Scholar
  9. 9.
    Gent, I. P., Harvey, W., & Kelsey, T. (2002). Groups and constraints: Symmetry breaking during search. In 8th international conference on principles and practice of constraint programming. Lecture notes in computer science (Vol. 2470, pp. 415–430). Springer.Google Scholar
  10. 10.
    Gent, I. P., Harvey, W., Kelsey, T., & Linton, S. (2003). Generic sbdd using computational group theory. In 9th international conference on principles and practice of constraint programming. Lecture notes in computer science (Vol. 2833, pp. 333–347). Springer.Google Scholar
  11. 11.
    Gent, I. P., Jefferson, C., & Miguel, I. (2006). Minion: A fast, scalable, constraint solver. In 17th European conference on artificial intelligence (pp. 98–102).Google Scholar
  12. 12.
    Gent, I. P., McKay, P., Miguel, I., Nightingale, P., & Huczynska, S. (2009). Modelling equidistant frequency permutation arrays in constraints. In 8th symposium on abstraction, reformulation, and approximation.Google Scholar
  13. 13.
    Gent, I. P., Petrie, K. E., & Puget, J.-F. (2006). Handbook of constraint programming, chapter symmetry in constraint programming (pp. 329–376). Elsevier.Google Scholar
  14. 14.
    Gent, I. P., & Smith, B. M. (2000). Symmetry breaking in constraint programming. In 14th European conference on artificial intelligence (pp. 599–603).Google Scholar
  15. 15.
    Grayland, A., Miguel, I., & Roney-Dougal, C. M. (2009). Snake lex: An alternative to double lex. In 15th international conference on principles and practice of constraint programming. Lecture notes in computer science (Vol. 5732, pp. 391–399). Springer.Google Scholar
  16. 16.
    Harvey, W. (2001). Symmetry breaking and the social golfer problem. In Workshop on symmetry in constraints.Google Scholar
  17. 17.
    Hnich, B., Prestwich, S. D., Selensky, E., & Smith, B. M. (2006). Constraint models for the covering test problem. Constraints, 11(3), 199–219.MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Holt, D. F., Eick, B., & O’Brien, E. A. (2005). Handbook of computational group theory. Chapman & Hall/CRC.Google Scholar
  19. 19.
    Hoos, H. H., & Stützle, T. (2004). Stochastic local search: Foundations and applications. Morgan Kaufmann.Google Scholar
  20. 20.
    ILOG, S. A. (2003). ILOG solver 6.0: Reference manual. France: Gentilly.Google Scholar
  21. 21.
    Katsirelos, G., Narodytska, N., & Walsh, T. (2009) On the complexity and completeness of static constraints for breaking row and column symmetry. In 16th international conference on principles and practice of constraint programming. Lecture notes in computer science (Vol. 6308, pp. 305–320). Springer.Google Scholar
  22. 22.
    Kelsey, T., Jefferson, C., Petrie, K., & Linton, S. (2006). Gaplex: Generalised static symmetry breaking. In 6th international workshop on symmetry breaking (pp. 17–23). France: Nantes.Google Scholar
  23. 23.
    Law, Y. C., & Lee, J. H. M. (2006). Symmetry breaking constraints for value symmetries in constraint satisfaction. Constraints, 11, 221–267.MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Luks, E., & Roy, A. (2004). The complexity of symmetry-breaking formulas. Annals of Mathematics and Artificial Intelligence, 41(1), 19–45.MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    McDonald, I., & Smith, B. (2002). Partial symmetry breaking. In 8th international conference on principles and practice of constraint programming. Lecture notes in computer science (Vol. 2470, pp. 207–213). Springer.Google Scholar
  26. 26.
    Petrie, K. E., & Smith, B. M. (2003). Symmetry breaking in graceful graphs. Technical Report APES-56a-2003, APES Research Group.Google Scholar
  27. 27.
    Prestwich, S. D., Hnich, B., Rossi, R., & Tarim, S. A. (2008). Symmetry breaking by metaheuristic search. In 8th international workshop on symmetry and constraint satisfaction problems.Google Scholar
  28. 28.
    Prestwich, S. D., Hnich, B., Rossi, R., & Tarim, S. A. (2008). Symmetry breaking by nonstationary optimisation. In 19th Irish conference on artificial intelligence and cognitive science.Google Scholar
  29. 29.
    Prestwich, S. D., Hnich, B., Rossi, R., & Tarim, S. A. (2009). Boosting partial symmetry breaking by local search. In 9th international workshop on symmetry and constraint satisfaction problems.Google Scholar
  30. 30.
    Puget, J.-F. (1993). On the satisfiability of symmetrical constraint satisfaction problems. In Methodologies for intelligent systems. Lecture notes in artificial intelligence (Vol. 689, pp. 350–361). Springer.Google Scholar
  31. 31.
    Puget, J.-F. (2003). Symmetry breaking using stabilizers. In 9th international conference on principles and practice of constraint programming. Lecture notes in computer science (Vol. 2833, pp. 585–599). Springer.Google Scholar
  32. 32.
    Puget, J.-F. (2005). Symmetry breaking revisited. Constraints, 10(1), 23–46.MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Puget, J.-F. (2006). Dynamic lex constraints. In 12th international conference on principles and practice of constraint programming. Lecture notes in computer science (Vol. 4204, pp. 453–467). Springer.Google Scholar
  34. 34.
    Puget, J.-F. (2006). An efficient way of breaking value symmetries. In 21st National conference on artificial intelligence (pp. 117–122). Stanford, California:AAAI Press/The MIT Press.Google Scholar
  35. 35.
    Sadler, A., & Gervet, C. (2008). Enhancing set constraint solvers with lexicographic bounds. Journal of Heuristics, 14(1), 23–67.zbMATHCrossRefGoogle Scholar
  36. 36.
    Sellmann, M., & van Hentenryck, P. (2005). Structural symmetry breaking. In 19th international joint conference on artificial intelligence (pp. 298–303). Scotland, UK: Edinburgh.Google Scholar
  37. 37.
    Smith, B. M. (2001). Reducing symmetry in a combinatorial design problem. In International workshop on integration of AI and OR techniques in constraint programming for combinatorial optimization problems.Google Scholar
  38. 38.
    The GAP Group. (2008). GAP—groups, algorithms, and programming, Version 4.4.12.Google Scholar
  39. 39.
    Fahle, T., Schamberger, S., & Sellmann, M. (2001). Symmetry breaking. In 7th international conference on principles and practice of constraint programming. Lecture notes in computer science (Vol. 2239, pp. 93–107). Springer.Google Scholar
  40. 40.
    Walsh, T. (2006). General symmetry breaking constraints. In 12th international conference on principles and practice of constraint programming. Lecture notes in computer science (Vol. 4204, pp. 650–664). Springer.Google Scholar
  41. 41.
    Yip, J., & van Hentenryck, P. (2009). The evaluation of length-lex set variables. In 15th international conference on principles and practice of constraint programming. Lecture notes in computer science (Vol. 5732, pp. 817–832). Springer.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Steve D. Prestwich
    • 1
    Email author
  • Brahim Hnich
    • 2
  • Helmut Simonis
    • 1
  • Roberto Rossi
    • 3
  • S. Armagan Tarim
    • 4
  1. 1.Cork Constraint Computation Centre, Department of Computer ScienceUniversity College CorkCorkIreland
  2. 2.Department of Computer EngineeringIzmir University of EconomicsIzmirTurkey
  3. 3.Business SchoolThe University of EdinburghEdinburghUK
  4. 4.Department of ManagementHacettepe UniversityAnkaraTurkey

Personalised recommendations