Advertisement

Constraints

, 16:283 | Cite as

Data transfer planning with tree placement for collaborative environments

  • Petr Holub
  • Hana RudováEmail author
  • Miloš Liška
Article

Abstract

Latency-sensitive data distribution and media streaming is a part of many network-centric applications. Based on our previous practical experiences with interactive high-quality media distribution and orchestration of network-centric collaborative environments, we have developed an automated planner for media stream distribution in environments where bandwidth of streams is comparable to capacities of network links. We have successfully adopted methods of constraint programming to deal with this problem. We provide a new comprehensive description of the constraint model which builds upon basic algebraic description we have published earlier. To formulate the model, a tree placement problem is proposed and a new corresponding variant of the link-based model for traffic placement problem is applied. We prove correctness of the proposed constraint satisfaction problem to present validity of included constraints with respect to the desired functionality of planning. An evaluation of the implemented solver is presented on a number of experimental problems to show effectiveness of the formulation. Importantly, the solver is a part of an application middleware called CoUniverse, which is pioneering orchestration of component-based interactive collaborative environments in a number of global demonstrations and projects. Both flexibility of the described model as well as generality of other parts of the CoUniverse framework allowed it to be one of very few early adopters of bandwidth-on-demand services for advanced high-bandwidth applications.

Keywords

Data transfer planning Constraint programming Collaborative environments Data networks 

References

  1. 1.
    Ahuja, R. K., Magnati, T. L., & Orlin, J. B. (1993). Network flows. Englewood Cliffs: Prentice-Hall.zbMATHGoogle Scholar
  2. 2.
    Ali, A. A., & Lepage, F. (2007). IGMPS, a new tool for estimating end-to-end available bandwidth in IP network paths. In International conference on networking and services (pp. 115–120). Los Alamitos: IEEE Computer Society.CrossRefGoogle Scholar
  3. 3.
    Applegate, D. L., Bixby, R. E., Chvátal, V., & Cook, W. J. (2007). The traveling salesman problem: A computational study. Princeton: Princeton University Press.Google Scholar
  4. 4.
    Baptiste, P., Le Pape, C., & Nuijten, W. (2001). Constraint-based scheduling: Applying constraint programming to scheduling problems. Norwell: Kluwer.zbMATHGoogle Scholar
  5. 5.
    Biondi, P., & Desclaux, F. (2006). Silver needle in the Skype, 2006. Presentation at Black Hat Europe 2006.Google Scholar
  6. 6.
    Bramley, R., Chiu, K., Diwan, S., Gannon, D., Govindaraju, M., Mukhi, N., et al. (2000). A component based services architecture for building distributed applications. In Ninth IEEE international symposium on high performance distributed computing (HPDC-9 2000) (p. 51). Los Alamitos: IEEE Computer Society.CrossRefGoogle Scholar
  7. 7.
    Brucker, P. (1998). Scheduling algorithms. Berlin: Springer.zbMATHGoogle Scholar
  8. 8.
    Childers, L., Disz, T., Olson, R., Papka, M. E., Stevens, R., & Udeshi, T. (2000). Access Grid: Immersive group-to-group collaborative visualization. In Proceedings of immersive projection technology. Iowa: Iowa State University.Google Scholar
  9. 9.
    Cronholm, W., & Ajili, F. (2004). Strong cost-based filtering for Lagrange decomposition applied to network design. In Principles and practice of constraint programming—CP 2004. Lecture notes in computer science (Vol. 3258, pp. 726–730). Berlin: Springer.CrossRefGoogle Scholar
  10. 10.
    De Miguel, T., Pavón, S., Salvachúa, J., Quemada, J., Alonso, P. L. C., Fernandez-Amigo, J., et al. (1994). ISABEL—Experimental distributed cooperative work application over broadband networks. In Multimedia: Advanced teleservices and high-speed communication architectures. Lecture notes in computer science (Vol. 868, pp. 353–362).Google Scholar
  11. 11.
    Dechter, R. (2003). Constraint processing. San Mateo: Morgan Kaufmann.Google Scholar
  12. 12.
    Diot, C., Neil, B., Lyles, B., Kassem, H., Levine, B. N., & Balensiefen, D. (2000). Deployment issues for the IP multicast service and architecture. IEEE Network, 14(1), 78–88.CrossRefGoogle Scholar
  13. 13.
    Dovrolis, C., Ramanathan, P., & Moore, D. (2004). Packet-dispersion techniques and a capacity-estimation methodology. IEEE/ACM Transactions on Networking, 12(6), 963–977.CrossRefGoogle Scholar
  14. 14.
    Dressler, F. (2003). Availability analysis in large scale multicast networks. In 15th IASTED international conference on parallel and distributed computing and systems (PDCS2003) (Vol. I, pp. 399–403).Google Scholar
  15. 15.
    Egger, S., & Braun, T. (2003). Performance evaluation of multicast for small conferences. In Group communications and charges; technology and business models. Lecture notes in computer science (Vol. 2816, pp. 226–233).Google Scholar
  16. 16.
    El-Sayed, A., Roca, V., & Mathy, L. (2003). A survey of proposals for an alternative group communication service. IEEE Network, 17(1), 46–51.CrossRefGoogle Scholar
  17. 17.
    Frei, C., & Faltings, B. (1999). Resource allocation in networks using abstraction and constraint satisfaction techniques. In J. Jaffar (Ed.), Principles and practice of constraint programming—CP’99. Lecture notes in computer science (Vol. 1713, pp. 205–233). Berlin: Springer.Google Scholar
  18. 18.
    Galvez, P. (2007). EVO: Enabling virtual organizations. In Computing in high energy and nuclear physics (CHEP’07).Google Scholar
  19. 19.
    Gharai, L., Lehman, T., Saurin, A., & Perkins, C. (2006). Experiences with high definition interactive video conferencing. In IEEE international conference on multimedia & expo (pp. 433–436). Los Alamitos: IEEE Computer Society.CrossRefGoogle Scholar
  20. 20.
    Goetz, B. (2004). Java theory and practice: Dynamic compilation and performance measurement. http://www.ibm.com/developerworks/library/j-jtp12214/.
  21. 21.
    Gross, J. L., & Yellen, J. (2005). Graph theory and its applications. Chapman & Hall/CRC.Google Scholar
  22. 22.
    Hefeeda, M., Habib, A., Botev, B., Xu, D., & Bhargava, B. (2003). Promise: Peer-to-peer media streaming using collectcast. In MULTIMEDIA ’03: Proceedings of the eleventh ACM international conference on multimedia (pp. 45–54). New York: ACM.CrossRefGoogle Scholar
  23. 23.
    Heineman, G. T., & Councill, W. T. (2001). Component-based software engineering: Putting the pieces together (ACM Press). Reading: Addison-Wesley Professional.Google Scholar
  24. 24.
    Hillier, F. S., & Lieberman, G. J. (2005). Introduction to operations research (8th ed.). New York: McGraw-Hill.Google Scholar
  25. 25.
    Hladká, E., Holub, P., & Denemark, J. (2004). User-empowered programmable network support for collaborative environment. In 3rd European conference on universal multiservice networks (ECUMN 2004) (pp. 367–376).Google Scholar
  26. 26.
    Holub, P., Hladká, E., & Matyska, L. (2005). Scalability and robustness of virtual multicast for synchronous multimedia distribution. In ICN 2005: 4th international conference on networking. Lecture notes in computer science (Vol. 3421, pp. 876–883). Heidelberg: Springer.Google Scholar
  27. 27.
    Holub, P., & Liška, M. (2005). High-definition video transmissions for medical applications and education. Technology and Health Care, 13(5), 398–400.Google Scholar
  28. 28.
    Holub, P., Matyska, L., Liška, M., Hejtmánek, L., Denemark, J., Rebok, T., et al. (2006). High-definition multimedia for multiparty low-latency interactive communication. Future Generation Computer Systems, 22(8), 856–861.CrossRefGoogle Scholar
  29. 29.
    Hutanu, A., Allen, G., Beck, S. D., Holub, P., Hartmut, K., Kulshrestha, A., et al. (2006). Distributed and collaborative visualization of large data sets using high-speed networks. Future Generation Computer Systems, 22(8), 1004–1010.CrossRefGoogle Scholar
  30. 30.
    Hutanu, A., Xin, Y., Thorpe, S., Holub, P., Paruchuri, R., Eiland, D., et al. (2007). Uncompressed HD video for collaborative teaching—An experiment. In The 3rd international conference on collaborative computing: Networking, applications and worksharing (pp. 253–261). ICST.Google Scholar
  31. 31.
    ITU-T X.200 data network and open system communications (1994). Open systems interconnection—Model and notation. International Telecommunication Union (ITU).Google Scholar
  32. 32.
    Kamarainen, O., & El Sakkout, H. (2004). Local probing applied to network routing. In Integration of AI and OR techniques in constraint programming for combinatorial optimization problems (CPAIOR 2004). Lecture notes in computer science (Vol. 3011, pp. 173–189). Berlin: Springer.CrossRefGoogle Scholar
  33. 33.
    Kenny, E., Krzywania, R., Neophytou, O., Roberts, G., & Tyley, S. (2008). AutoBAHN: GEANT2 bandwidth on demand (BoD). Technical report deliverable DJ3.4.2, GEANT2.Google Scholar
  34. 34.
    Kocay, W., & Kreher, D. L. (2004). Graphs, algorithms and optimization. Chapman & Hall/CRC.Google Scholar
  35. 35.
    Kola, G., Kosar, T., & Livny, M. (2004). A fully automated fault-tolerant system for distributed video processing and off-site replication. In Proceedings of the 14th ACM international workshop on network and operating systems support for digital audio and video (NOSSDAV 2004), pp. 122–126.Google Scholar
  36. 36.
    Kosar, T., & Livny, M. (2005). A framework for reliable and efficient data placement in distributed computing systems. Journal of Parallel and Distributed Computing, 65(10), 1146–1157.CrossRefGoogle Scholar
  37. 37.
    Lehman, T., Sobieski, J., & Jabbari, B. (2005). A survey of combinatorial optimization problems in multicast routing. Computers & Operations Research, 32(8), 1953–1981.CrossRefGoogle Scholar
  38. 38.
    Lehman, T., Sobieski, J., & Jabbari, B. (2006). Dragon: A framework for service provisioning in heterogeneous grid networks. IEEE Communication Magazine, 44(3), 84–90.CrossRefGoogle Scholar
  39. 39.
    Lever, J. (2005). A local search/constraint propagation hybrid for a network routing problem. International Journal on Artificial Intelligence Tools, 14(1–2), 43–60.CrossRefGoogle Scholar
  40. 40.
    Liu, X., Ravindran, K., & Loguinov, D. (2008). A stochastic foundation of available bandwidth estimation: Multi-hop analysis. IEEE/ACM Transactions on Networking, 16(1), 130–143.CrossRefGoogle Scholar
  41. 41.
    Liška, M., & Holub, P. (2008). CoUniverse: Framework for building self-organizing collaborative environments using extreme-bandwidth media applications. In Euro-Par 2008 workshops—Parallel processing. Lecture notes in computer science (Vol. 5415, pp. 339–351). Berlin: Springer.Google Scholar
  42. 42.
    Liška, M., Holub, P., Lake, A., & Vollbrecht, J. (2010). CoUniverse orchestrated collaborative environment with dynamic circuit networks. In ICN 2010: Ninth international conference on networks (pp. 300–305). Los Alamitos: IEEE Computer Society.CrossRefGoogle Scholar
  43. 43.
    Ma, Q., & Steenkiste, P. (1997). On path selection for traffic with bandwidth guarantees. In IEEE international conference on network protocols (pp. 191–202).Google Scholar
  44. 44.
    MacLaren, J. (2009). HARC: The highly-available resource co-allocator. In On the move to meaningful internet systems 2007: CoopIS, DOA , ODBASE, GADA , and IS. Lecture notes in computer science (Vol. 4804, pp. 1385–1402). Berlin: Springer.CrossRefGoogle Scholar
  45. 45.
    Miller, C. E., Tucker, A. W., & Zemlin, R. A. (1960). Integer programming formulation of traveling salesman problems. Journal of ACM, 7, 326–329.MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Ouaja, W., & Richards, B. (2004). A hybrid multicommodity routing algorithm for traffic engineering. Networks, 43(3), 125–140.MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Ouaja, W., & Richards, B. (2005). Hybrid Lagrangian relaxation for bandwith-constrained routing: Knapsack decomposition. In 20th annual ACM symposium on applied computing (pp. 383–387).Google Scholar
  48. 48.
    Padmanabhan, V. N., Wang, H. J., Chou, P. A., & Sripanidkulchai, K. (2002). Distributing streaming media content using cooperative networking. In NOSSDAV ’02: Proceedings of the 12th international workshop on network and operating systems support for digital audio and video (pp. 177–186). New York: ACM.CrossRefGoogle Scholar
  49. 49.
    Pataki, G. (2003). Teaching integer programming formulations using the traveling salesman problem. SIAM Review, 45(1), 116–123.MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Perkins, C., & Gharai, L. (2004). Real-time collaborative environments and the grid. In Proceedings of the workshop on advanced collaborative environments (WACE’04).Google Scholar
  51. 51.
    Pinedo, M. L. (2005). Planning and scheduling in manufacturing and services. Springer series in operations research. Berlin: Springer.Google Scholar
  52. 52.
    Quemada, J., Miguel, T., Pavón, S., Huecas, G., Robles, T., Salvachúa, J., et al. (2004). Isabel: An application for real time audience interconnection over the internet. In Proc. Terena networking conference (TERENA ’04).Google Scholar
  53. 53.
    Resende, M. G.C., & Pardalos, P. M. (Eds.) (2006). Handbook of optimization in telecommunications. Berlin: Springer.zbMATHGoogle Scholar
  54. 54.
    Rossi, F., van Beek, P., & Walsh, T. (Eds.) (2006). Handbook of constraint programming. Amsterdam: Elsevier.zbMATHGoogle Scholar
  55. 55.
    Shimizu, T., Shirai, D., Takahashi, H., Murooka, T., Obana, K., Tonomura, Y., et al. (2006). International real-time streaming of 4K digital cinema. Future Generation Computer Systems, 22(8), 929–939.CrossRefGoogle Scholar
  56. 56.
    Simonis, H. (2006). Constraint application in networks. In F. Rossi, P. van Beek, & T. Walsh (Eds.), Handbook of constraint programming (pp. 875–903). Amsterdam: Elsevier.CrossRefGoogle Scholar
  57. 57.
    Sobieski, J., Lehman, T., Jabbari, B, Ruszczyk, C., Summerhill, R., & Whitney, A. (2006). Dynamic provisioning of lightpath services for radio astronomy applications. Future Generation Computer Systems, 22(8), 984–992.CrossRefGoogle Scholar
  58. 58.
    Suarez, T. L. (2007). Access grid technology in classroom and research environments. Journal of Supercomputing, 41(2), 133–145.CrossRefGoogle Scholar
  59. 59.
    Tu, Y.-C., Sun, J., Hefeeda, M., & Prabhakar, S. (2005). An analytical study of peer-to-peer media streaming systems. ACM Transactions on Multimedia Computing, Communications and Applications, 1(4), 354–376.CrossRefGoogle Scholar
  60. 60.
    Vishwanath, V., Balaji, P., Feng, W. C., Leigh, J., & Panda, D. K. (2006). A case for UDP offload engines in LambdaGrids. In 4th international workshop on protocols for fast long-distance networks (PFLDnet’06) (p. 5).Google Scholar
  61. 61.
    Wesley-Smith, I., Liška, M., & Holub, P. (2008). Implementation of DXT compression for ultragrid. Technical report 4/2008, CESNET.Google Scholar
  62. 62.
    Wu, M.-Y., Zhu, Y., & Shu, W. (2005). Placement of proxy-based multicast overlays. Computer Networks, 48(4), 627–655.zbMATHCrossRefGoogle Scholar
  63. 63.
    Zerola, M., Barták, R., Lauret, J., & Šumbera, M. (2009). Efficient multi-site data movement in distributed environment. In Proceedings of the 10th IEEE/ACM international conference on grid computing (GRID) (pp. 171–172). Piscataway: IEEE.CrossRefGoogle Scholar
  64. 64.
    Zerola, M., Lauret, J., Barták, R., & Šumbera, M. (2008). Using constraint programming to resolve the multi-source/multi-site data movement paradigm on the grid. In XII advanced computing and analysis techniques in physics research.Google Scholar
  65. 65.
    Zerola, M., Šumbera, M., Barták, R., & Lauret, J. (2009). Using constraint programming to plan efficient data movement on the grid. In 21st IEEE international conference on tools with artificial intelligence (pp. 729–733).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Institute of Computer ScienceMasaryk UniversityBrnoCzech Republic
  2. 2.Faculty of InformaticsMasaryk UniversityBrnoCzech Republic

Personalised recommendations